首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 632 毫秒
1.
Methamphetamine and methcathinone are psychostimulant drugs with high potential for abuse. In animals, methamphetamine and related drugs are known to damage brain dopamine (DA) neurons, and this damage has recently been shown to be detectable in living nonhuman primates by means of positron emission tomography (PET) with [11C]WIN-35,428, a DA transporter (DAT) ligand. The present studies determined whether living humans with a history of methamphetamine or methcathinone abuse showed evidence of lasting decrements in brain DAT density. PET studies were performed in 10 control subjects, six abstinent methamphetamine users, four abstinent methcathinone users, and three patients with Parkinson's disease (PD). On average, subjects had abstained from amphetamine use for approximately 3 years. Before PET studies, all subjects underwent urine and blood toxicology screens to rule out recent drug use. Compared with controls, abstinent methamphetamine and methcathinone users had significant decreases in DAT density in the caudate nucleus (-23 and -24%, respectively) and putamen (-25 and -16%, respectively). Larger decreases in DAT density were evident in patients with PD (47 and 68% in caudate and putamen, respectively). Neither methamphetamine nor methcathinone users showed clinical signs of parkinsonism. Persistent reductions of DAT density in methamphetamine and methcathinone users are suggestive of loss of DAT or loss of DA terminals and raise the possibility that as these individuals age, they may be at increased risk for the development of parkinsonism or neuropsychiatric conditions in which brain DA neurons have been implicated.  相似文献   

2.
We examined whether all of human midbrain tyrosine hydroxylase (TH) neurons substantially synthesize dopamine (DA) using dual labeling immunohistochemical technique of TH and aromatic L-amino acid decarboxylase (AADC). In the substantia nigra, besides many neurons doubly stained for TH and AADC, neurons stained only for TH and only for AADC (D-neurons [C.B. Jaeger, D.A. Ruggiero, V.R. Albert, T.H. Joh, D.J. Reis, Immunocytochemical localization of aromatic l-amino acid decarboxylase, in: A. Bj?rklund, T. H?kfelt (Eds.), Handbook of Chemical Neuroanatomy, Classical Transmitters in the CNS, Vol. 2, Part 1, Elsevier, Amsterdam, 1984, pp. 387-408.]) were identified. In the ventral tegmental area, dually labeled neurons and TH-only-positive neurons were found. It is indicated that the number of midbrain TH neurons does not reflect the exact number of DA neurons.  相似文献   

3.
Radioactive in situ hybridization was used to map the cellular localization of dopamine (DA) transporter mRNA-containing cells in the adult rat central nervous system. The distribution of DA transporter mRNA-containing cells was compared to adjacent sections processed to visualize tyrosine hydroxylase (TH) mRNA, a marker of catecholamine containing neurones. TH mRNA-containing cells, visualized using an alkaline phosphatase labelled probe, were detected in the hypothalamus, midbrain and pons; the strongest hybridization signals being detected in the substantia nigra, ventral tegmental area and locus coeruleus. The distribution of DA transporter mRNA-containing cells was more restricted; a strong signal being detected in the substantia nigra pars compacta and ventral tegmental area only. No hybridization signal was detected in the locus coeruleus. By simultaneously hybridizing mesencephalic tissue with both the alkaline phosphatase-labelled TH probe and the 35S-labelled DA transporter probe we were able to demonstrate that both DA transporter and TH mRNAs are expressed by the same cells in the substantia nigra and ventral tegmental area. The restricted anatomical localization of DA transporter mRNA-containing cells and the lack of expression in the locus coeruleus and other adrenergic and noradrenergic cell groups confirms the DA transporter as a presynaptic marker of DA containing nerve cells in the rat brain.  相似文献   

4.
The prevalence of Parkinson's disease (PD) is higher in whites than in nonwhites and it increases with advancing age. The pathological hallmarks of PD are loss of pigmented neurons in the substantia nigra pars compacta (SNpc) and presence of Lewy bodies. With increasing age, a similar loss of pigmented neurons in the SNpc has been reported. Hence, age and race possibly play a role in the pathogenesis of PD. The objectives of this study were to count the number of melanized neurons in the SNpc in normal human brains from India and study the change in neuronal count with advancing age and to compare the neuronal counts from this Indian population with counts reported in normal brains from the United Kingdom. Melanized neurons in the SNpc were counted in 84 normal human brains (age range, 5-84 years) in a single 7-microm section at the level of emergence of the oculomotor nerve. In the brains from India, there was no loss of melanized nigral neurons with advancing age. The absolute number of these melanized neurons was about 40% lower than the brains from UK. Despite a low number of melanized nigral neurons in the brains from India, individuals function normally and have dopamine levels comparable with their Western counterparts, suggesting that it is not the absolute number of melanized nigral neurons but the percent loss of nigral neurons that results in dopaminergic deficiency in PD. There is no significant loss of pigmented nigral neurons with age, suggesting that the loss seen in PD is exclusively due to the disease process itself. Indians have a lower prevalence of PD despite having a low count of melanized nigral neurons, suggesting that better protective mechanisms may be present in the Indians to prevent the loss of nigral neurons.  相似文献   

5.
The effects of in utero cocaine exposure on the development of the mRNAs encoding the dopamine transporter (DAT) and the D1, D2 and D5 dopamine receptor subtypes were determined in fetal monkey brains at day 45 and day 60 of gestation. Pregnant monkeys were treated with cocaine 3 mg/kg or saline i.m., four times a day from day 18 of gestation until the pregnancy was terminated at day 45 or day 60. The fetal brains were dissected, and tissue RNA extracted and quantified using ribonuclease protection assay analysis. In day 45 fetal monkeys, dopamine D1 and D2 receptor subtype mRNAs and DAT mRNA were found in low quantities both in control and cocaine-treated subjects. In day 60 fetal monkeys, D1 receptor mRNA levels were highest in the frontal cortex/striatal area, and low to moderate quantities were found in diencephalic and mesencephalic fetal brain regions. Dopamine D2 receptor mRNA levels were highest in the frontal cortex/striatal area, diencephalon and the midbrain, moderate in the brainstem and low in the caudal temporal lobe and surrounding cortical areas. Dopamine D5 receptor mRNA was expressed in low quantities throughout the day 60 fetal monkey brain, whereas DAT mRNA was found in the midbrain only. In utero cocaine exposure caused a significant increase in dopamine D1, D2 and D5 receptor subtype mRNAs in the frontal cortex/striatal area of day 60 fetal monkeys. These results support the hypothesis that dopamine synthesis and release may be reduced in cocaine-treated fetuses, which results in dopamine receptor up-regulation.  相似文献   

6.
A consistent neurochemical abnormality in Parkinson's disease (PD) is degeneration of dopaminergic neurons in substantia nigra, leading to a reduction of striatal dopamine (DA) levels. As tyrosine hydroxylase (TH) catalyses the formation of L-DOPA, the rate-limiting step in the biosynthesis of DA, the disease can be considered as a TH-deficiency syndrome of the striatum. Similarly, some patients with hereditary L-DOPA-responsive dystonia, a neurological disorder with clinical similarities to PD, have mutations in the TH gene and decreased TH activity and/or stability. Thus, a logical and efficient treatment strategy for PD is based on correcting or bypassing the enzyme deficiency by treatment with L-DOPA, DA agonists, inhibitors of DA metabolism, or brain grafts with cells expressing TH. A direct pathogenetic role of TH has also been suggested, as the enzyme is a source of reactive oxygen species (ROS) in vitro and a target for radical-mediated oxidative injury. Recently, it has been demonstrated that L-DOPA is effectively oxidized by mammalian TH in vitro, possibly contributing to the cytotoxic effects of DOPA. This enzyme may therefore be involved in the pathogenesis of PD at several different levels, in addition to being a promising candidate for developing new treatments of this disease.  相似文献   

7.
The sequestration of RNA in Alzheimer's disease (AD) senile plaques (SPs) and the production of intraneuronal amyloid-beta peptides (Abeta) prompted analysis of the mRNA profile in single immunocytochemically identified SPs in sections of AD hippocampus. By using amplified RNA expression profiling, polymerase chain reaction, and in situ hybridization, we assessed the presence and abundance of 51 mRNAs that encode proteins implicated in the pathogenesis of AD. The mRNAs in SPs were compared with those in individual CA1 neurons and the surrounding neuropil of control subjects. The remarkable demonstration here, that neuronal mRNAs predominate in SPs, implies that these mRNAs are nonproteinaceous components of SPs, and, moreover, that mRNAs may interact with Abeta protein and that SPs form at sites where neurons degenerate in the AD brain.  相似文献   

8.
Hypothalamic neurons control a variety of important hormonal and behavioral functions. Little is known, however, about the neurotrophic factors that these neurons may require for survival and/or maintenance of their differentiated functions. We conducted experiments to examine this issue, utilizing a combination of immunohistochemical, in situ hybridization and cell culture approaches. We found that the low affinity receptor for nerve growth factor (p75 NGFR) is present in small subsets of hypothalamic peptidergic neurons identified as such by their content of galanin, luteinizing hormone-releasing hormone (LHRH) and vasointestinal peptide (VIP). More prominently, however, examination of hypothalamic dopaminergic (DA) neurons for the presence of p75 NGFR-like immunoreactivity revealed that the receptor was present on tyrosine hydroxylase (TH)-positive neurons of the zona incerta and periventricular region, but not on neuroendocrine DA neurons of the tuberoinfundibular region. In situ hybridization experiments using a p75 NGFR cRNA confirmed this distribution. Regardless of the presence or absence of p75 NGFR, neither DA group expresses trkA mRNA, indicating that these two major hypothalamic subsets of DNA neurons are NGF-insensitive. A substantial fraction of TH mRNA-positive cells in the zona incerta expresses trkB mRNA, which encodes the receptor for brain derived neurotrophic factor (BDNF); in turn BDNF supports the in vitro survival of hypothalamic TH neurons bearing p75-NGFR, suggesting that BDNF is trophic for DNA neurons of the zona incerta. In contrast, tuberoinfundibular DA neurons do not express trkB mRNA, but some have trkC mRNA, which encodes the receptor for neurotrophin-3 (NT-3). The in vitro survival of TH neurons devoid of p75-NGFR is supported by NT-3, implying that NT-3 may be trophic for a subset of tuberoinfundibular DA neurons. These results suggest that, in spite of expressing an identical neurotransmitter phenotype, anatomically and functionally segregated DA neurons of the neurodendocrine brain are sustained by different neurotrophic factors.  相似文献   

9.
Dopamine (DA) autoreceptors expressed along the somatodendritic extent of midbrain DA neurons modulate impulse activity, whereas those expressed at DA nerve terminals regulate both DA synthesis and release. Considerable evidence has indicated that these DA autoreceptors are of the D2 subtype of DA receptors. However, many pharmacological studies have suggested an autoreceptor role for the DA D3 receptor. This possibility was tested with mice lacking the D3 receptor as a result of gene targeting. The basal firing rates of DA neurons within both the substantia nigra and ventral tegmental area were not different in D3 receptor mutant and wild-type mice. The putative D3 receptor-selective agonist R(+)-trans-3,4,4a, 10b-tetrahydro-4-propyl-2H,5H-(1)benzopyrano(4,3-b)-1,4-oxazin+ ++-9-ol (PD 128907) was equipotent at inhibiting the activity of both populations of midbrain DA neurons in the two groups of mice. In the gamma-butyrolactone (GBL) model of DA autoreceptor function, mutant and wild-type mice were identical with respect to striatal DA synthesis and its suppression by PD 128907. In vivo microdialysis studies of DA release in ventral striatum revealed higher basal levels of extracellular DA in mutant mice but similar inhibitory effects of PD 128907 in mutant and wild-type mice. These results suggest that the effects of PD 128907 on dopamine cell function reflect stimulation of D2 as opposed to D3 receptors. Although D3 receptors do not seem to be significantly involved in DA autoreceptor function, they may participate in postsynaptically activated short-loop feedback modulation of DA release.  相似文献   

10.
Glial cell line-derived neurotrophic factor (GDNF) exhibits potent effects on survival and function of midbrain dopaminergic (DA) neurons in a variety of models. Although other growth factors expressed in the vicinity of developing DA neurons have been reported to support survival of DA neurons in vitro, to date none of these factors duplicate the potent and selective actions of GDNF in vivo. We report here that neurturin (NTN), a homolog of GDNF, is expressed in the nigrostriatal system, and that NTN exerts potent effects on survival and function of midbrain DA neurons. Our findings indicate that NTN mRNA is sequentially expressed in the ventral midbrain and striatum during development and that NTN exhibits survival-promoting actions on both developing and mature DA neurons. In vitro, NTN supports survival of embryonic DA neurons, and in vivo, direct injection of NTN into the substantia nigra protects mature DA neurons from cell death induced by 6-OHDA. Furthermore, administration of NTN into the striatum of intact adult animals induces behavioral and biochemical changes associated with functional upregulation of nigral DA neurons. The similarity in potency and efficacy of NTN and GDNF on DA neurons in several paradigms stands in contrast to the differential distribution of the receptor components GDNF Family Receptor alpha1 (GFRalpha1) and GFRalpha2 within the ventral mesencephalon. These results suggest that NTN is an endogenous trophic factor for midbrain DA neurons and point to the possibility that GDNF and NTN may exert redundant trophic influences on nigral DA neurons acting via a receptor complex that includes GFRalpha1.  相似文献   

11.
The neurotoxic action of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been proposed to be attenuated by sequestration into intracellular vesicles by the vesicular monoamine transporter (VMAT2). The purpose of this study was to determine if mice with genetically reduced levels of VMAT2 (heterozygote knockout; VMAT2 +/-) were more vulnerable to MPTP. Striatal dopamine (DA) content, the levels of DA transporter (DAT) protein, and the expression of glial fibrillary acidic protein (GFAP) mRNA, a marker of gliosis, were assessed as markers of MPTP neurotoxicity. In all parameters measured VMAT2 +/- mice were more sensitive than their wild-type littermates (VMAT2 +/+). Administration of MPTP (7.5, 15, or 30 mg/kg, b.i.d.) resulted in dose-dependent reductions in striatal DA levels in both VMAT2 +/- and VMAT2 +/+ animals, but the neurotoxic potency of MPTP was approximately doubled in the VMAT2 +/- mice: 59 versus 23% DA loss 7 days after 7.5 mg/kg dose for VMAT2 +/- and VMAT2 +/+ mice, respectively. Dopaminergic nerve terminal integrity, as assessed by DAT protein expression, also revealed more drastic reductions in the VMAT2 +/- mice: 59 versus 35% loss at 7.5 mg/kg and 95 versus 58% loss at 15 mg/kg for VMAT2 +/- and VMAT2 +/+ mice, respectively. Expression of GFAP mRNA 2 days after MPTP was higher in the VMAT2 +/- mice than in the wild-type: 15.8- versus 7.8-fold increase at 7.5 mg/kg and 20.1- versus 9.6-fold at 15 mg/kg for VMAT2 +/- and VMAT2 +/+ mice, respectively. These observations clearly demonstrate that VMAT2 +/- mice are more susceptible to the neurotoxic effects of MPTP, suggesting that VMAT2-mediated sequestration of the neurotoxin into vesicles may play an important role in attenuating MPTP toxicity in vivo.  相似文献   

12.
The plasma membrane dopamine transporter (DAT) is considered to be a reliable marker of presynaptic dopaminergic terminal loss. Previous in vivo imaging and postmortem binding studies have detected a loss in striatal DAT binding in Parkinson's diseased (PD) brain; however, these techniques have poor spatial resolution and may suffer from nonspecific binding of some ligands. In this study, we use novel highly specific monoclonal antibodies to distinct epitopes of human DAT to quantify and localize the protein. Western blot analysis revealed marked reductions in DAT immunoreactivity in putamen, caudate, and nucleus accumbens of PD brain compared with control cases, and the reductions were significantly correlated to disease duration. Immunohistochemistry revealed DAT-immunoreactive fibers and puncta that were dense throughout the striatum of control brains but that were drastically reduced in putamen of PD brains. Caudate from PD brains showed a significant degree of sparing along the border of the ventricle, and the nucleus accumbens was relatively preserved. An unexpected finding was that discrete islands of DAT immunoreactivity were preserved within the matrix of PD putamen. Thus, immunological analysis of DAT protein provides novel and sensitive means for localizing and quantifying DAT protein in PD and other neurological disorders involving dopaminergic systems.  相似文献   

13.
Amphetamine (AMPH) inhibits uptake and causes release of dopamine (DA) from presynaptic terminals. AMPH can act on both vesicular storage of DA and directly on the dopamine transporter (DAT). To assess the relative importance of these two processes, we have examined the releasing actions of AMPH in mice with a genetic deletion of the DAT. The sequence of actions of AMPH has been determined by following the real time changes of DA in the extracellular fluid of intact tissue with fast scan cyclic voltammetry. In striatal slices from wild-type mice, AMPH causes a gradual (approximately 30 min) increase in extracellular DA, with a concomitant disappearance of the pool of DA available for depolarization-evoked release. Conversely, in slices from mice lacking the DAT, although a similar disappearance of electrically stimulated DA release occurs, extracellular DA does not increase. Similarly, microdialysis measurements of DA after AMPH in freely moving animals show no change in mice lacking the DAT, whereas it increases 10-fold in wild-type mice. In contrast, redistribution of DA from vesicles to the cytoplasm by the use of a reserpine-like compound, Ro4-1284, does not increase extracellular DA in slices from wild-type animals; however, subsequent addition of AMPH induces rapid (<5 min) release of DA. Thus, the DAT is required for the releasing action, but not the vesicle-depleting action, of AMPH on DA neurons, and the latter represents the rate-limiting step in the effects of AMPH. Furthermore, these findings suggest that in the absence of pharmacological manipulation, such as the use of amphetamine, endogenous cytoplasmic DA normally does not reach sufficient concentrations to reverse the DAT.  相似文献   

14.
Hypotensive haemorrhage induces nuclear Fos expression and upregulates tyrosine hydroxylase (TH) mRNA in catecholamine-containing cell groups of the rat medulla oblongata. To shed light on the significance of the coexistence of neuropeptide Y (NPY) in aminergic neurons, the impact of graded levels of haemorrhage on temporal changes in the expression of TH and NPY mRNAs was compared; concurrent staining for Fos permitted comparisons between cells that ostensibly were and were not targeted by the stimulus. A 15% haemorrhage provoked increased NPY expression in all medullary catecholamine cell groups except the A2; these changes were detected predominantly in Fos-immunoreactive neurons (Fos-ir) at later (2-4 h) time points. Upregulation of TH and NPY mRNAs in Fos-ir neurons followed distinct time courses, with NPY responses peaking more rapidly, particularly in the C1 and C2 cell groups. Adrenergic cell groups displayed greater maximal increases in NPY expression than the A1 noradrenergic cell group while the converse was true of TH mRNA response. Increasing the severity of haemorrhage resulted in more pronounced increases in both mRNA responses in each aminergic region. These findings indicate that haemorrhage differentially affects TH and NPY expression in medullary catecholamine cell groups that participate in the maintenance of cardiovascular homeostasis. The differential nature of these responses suggests them not to be a simple consequence of metabolic alterations pursuant to increased synaptic activity. The prompt and robust NPY mRNA responses in adrenergic neurons suggests a mechanism by which peptide content of these cell groups' terminal projections is defended.  相似文献   

15.
The distribution of dopamine (DA)-containing cell bodies, fibers, and terminals in the brain and spinal cord of Lampetra fluviatilis was investigated by immunohistochemical means. In order to distinguish dopaminergic neurons from those using other catecholamines as the primary neurotransmitter, the distribution of dopamine-immunoreactive structures was compared to that of cell bodies, fibers, and terminals labelled with antibodies directed against the enzymes tyrosine hydroxylase (TH), aromatic L-amino acid decarboxylase (AADC), dopamine beta-hydroxylase (DBH), and phenylethanolamine-N-methyl transferase (PNMT). We define dopaminergic neurons as those that are simultaneously DA, TH, and AADC immunoreactive and at the same time DBH and PNMT nonreactive. The overall concentrations of dopamine, noradrenaline, and adrenaline and some of their metabolites were also measured via high-performance liquid chromatography of whole-brain extracts. Our results revealed the presence of 10 populations of dopaminergic neurons in the brain of the lamprey in the olfactory bulb, preoptic area, hypothalamus, rhombencephalon, and spinal cord. In addition, uniquely DA-immunoreactive neurons, in contact with the cerebrospinal fluid, were observed in the hypothalamus and spinal cord. Chromatography indicated that dopamine exists in considerably higher concentrations than noradrenaline in the lamprey brain, whereas adrenaline is absent, the latter finding being supported by our failure to observe any PNMT-immunoreactive cell bodies, fibers, or terminals. The dopaminergic system of the lamprey appears to share many features not only with that of other anamniotes but also with that of amniotes; however, as in teleosts, dopaminergic neurons in the midbrain corresponding to the substantia nigra, the retrorubral area, and the ventral tegmental area of other species do not exist in the lamprey.  相似文献   

16.
Catecholamines, thought to derive from the extrinsic innervation of the ovary, participate in the regulation of ovarian development and mature gonadal function. Recently, intraovarian neurons containing tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, were described in the ovary of nonhuman primates. We now show that the primate ovary expresses both the genes encoding TH and dopamine beta-hydroxylase (DBH), the key enzymes in norepinephrine (NE) biosynthesis. Ovarian neurons were identified as a site of TH and DBH gene expression, and surprisingly, oocytes were identified as an exclusive site of DBH synthesis. Oocytes contain neither TH mRNA nor protein, indicating that they are unable to synthesize dopamine (DA). They did, however, express a DA transporter gene identical to that found in human brain. The physiological relevance of this transporter system and DBH in oocytes was indicated by the ability of isolated oocytes to metabolize exogenous DA into NE. Isolated follicles containing oocytes-but not those from which the oocytes had been removed-responded to DA with an elevation in cAMP levels; this elevation was prevented by propranolol, a beta-adrenoreceptor antagonist. The results suggest that oocytes and somatic cells are linked by a neuroendocrine loop consisting of NE synthesized in oocytes from actively transported DA and cAMP produced by somatic follicular cells in response to NE-induced beta-adrenoreceptor activation.  相似文献   

17.
The neurotoxic effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was tested on mice lacking the dopamine (DA) transporter (DAT-/- mice). Striatal tissue DA content and glial fibrillary acidic protein (GFAP) mRNA expression were assessed as markers of MPTP neurotoxicity. MPTP (30 mg/kg, s.c., b.i.d.) produced an 87% decrease in tissue DA levels and a 29-fold increase in the level of GFAP mRNA in the striatum of wild-type animals 48 h after administration. Conversely, there were no significant changes in either parameter in DAT-/- mice. Heterozygotes demonstrated partial sensitivity to MPTP administration as shown by an intermediate value (48%) of tissue DA loss. Direct intrastriatal infusion of the active metabolite of MPTP, 1-methyl-4-phenylpyridinium (MPP+; 10 mM), via a microdialysis probe produced a massive efflux of DA in wild-type mice (>320-fold). In the DAT-/- mice the same treatment produced a much smaller increase in extracellular DA (sixfold), which is likely secondary to tissue damage due to the implantation of the dialysis probe. These observations show that the DAT is a mandatory component for expression of MPTP toxicity in vivo.  相似文献   

18.
Dopamine (DA) has been considered to play an important role in the development of ischemic neuronal injury in the caudate putamen (CPu). The goal of this study was to examine the change in the dopamine transporter (DAT) after ischemic insult in CPu. METHODS: Male Mongolian gerbils (n = 10) were exposed to 10-min forebrain ischemia. Animals were decapitated 24 hr (n = 5) and 96 hr (n = 5) after ischemia. The change in the amount of DAT binding sites in CPu was evaluated by in vitro autoradiography with [125I]-beta-CIT (3 beta-(4-iodophenyl)tropan-2 beta-carboxylic acid methyl ester). In addition, the expression of DAT mRNA in CPu and the substantia nigra pars compacta (SNC) was examined. Results: Iodine-125-beta-CIT specific binding was significantly increased in dorsolateral CPu with ischemic damage both 24 hr and 96 hr after ischemia, with greater increase at 96 hr. DAT mRNA in SNC was also significantly increased 96 hr after ischemia, which corresponded with the increase of [125I] beta-CIT binding. However, DAT mRNA in SNC was decreased 24 hr after ischemia. In the ischemic lesion in CPu, no expression of DAT mRNA could be detected both 24 hr and 96 hr after ischemia. CONCLUSION: The change in DAT after ischemic insult is clarified with [125I] beta-CIT. This increase of [125I] beta-CIT binding does not come from de novo expression of DAT in glial cells in the damaged area in CPu. This increase of beta-CIT binding reflects increase of DAT synthesis in DA neurons in SNC (96 hr) or other factors such as the impairment of the degradation of DAT in the damaged area in CPu.  相似文献   

19.
Mice with a genetic deletion of the dopamine transporter (DAT) were used to assess its role in the function of dopamine (DA) neurons. Profound alterations in the homeostasis of the nigrostriatal DA system were induced by the absence of the DAT. Extracellular levels of DA were elevated and clearance of released DA was 300-times slower than in control mice. This was accompanied by a 20-fold decrease in tissue DA levels and a paradoxical doubling of the rate of DA synthesis. A crucial role is indicated for the DAT in maintenance of DA neuron presynaptic function, particularly in the control of storage mechanisms.  相似文献   

20.
Dopamine (DA) neurons are uniquely vulnerable to damage and disease. Their loss in humans is associated with diseases of the aged, most notably, Parkinson's Disease (PD). There is now a great deal of evidence to suggest that the destruction of DA neurons in PD involves the accumulation of harmful oxygen free radicals. Since the antioxidant hormone, melatonin, is one of the most potent endogenous scavengers of these toxic radicals, we tested its ability to rescue DA neurons from damage/death in several laboratory models associated with oxidative stress. In the first model, cells were grown in low density on serum-free media. Under these conditions, nearly all cells died, presumably due to the lack of essential growth factors. Treatment with 250 microM melatonin rescued nearly all dying cells (100% tau+ neurons), including tyrosine hydroxylase immunopositive DA neurons, for at least 7 days following growth factor deprivation. This effect was dose and time dependent and was mimicked by other antioxidants such as 2-iodomelatonin and vitamin E. Similarly, in the second model of oxidative stress, 250 microM melatonn produced a near total recovery from the usual 50% loss of DA neurons caused by neurotoxic injury from 2.5 microM 1-methyl-4-phenylpyridine (MPP+). These results indicate that melatonin possesses the remarkable ability to rescue DA neurons from cell death in several experimental paradigms associated with oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号