首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objectives of this study were to determine the effect of decreasing dietary cation-anion difference [DCAD; (Na+ + K+) ? (Cl? + S2?)] of the prepartum diet on aspects of mineral metabolism, energy metabolism, and performance of peripartum dairy cows. Multiparous Holstein cows (n = 89) were enrolled between 38 and 31 d before expected parturition and randomized to treatments in a completely randomized design (restricted to balance for previous 305-d mature equivalent milk production, parity, and body condition score) at 24 d before expected parturition. Treatments consisted of a low-K ration without anion supplementation [CON; n = 30, DCAD = +18.3 mEq/100 g of dry matter (DM)]; partial anion supplementation to a low-K ration (MED; n = 30, DCAD = +5.9 mEq/100 g of DM); and anion supplementation to a low-K ration to reach a targeted average urine pH between 5.5 and 6.0 (LOW; n = 29, DCAD = ?7.4 mEq/100 g of DM). Cows were fed a common postpartum diet and data collected through 63 d in milk. Urine pH (CON = 8.22, MED = 7.89, and LOW = 5.96) was affected quadratically by decreasing prepartum DCAD. A linear relationship between urine pH and urine Ca:creatinine ratio was observed (r = ?0.81). Plasma Ca concentrations in the postpartum period (d 0 to 14; CON = 2.16, MED = 2.19, and LOW = 2.27 mmol/L) were increased linearly with decreasing prepartum DCAD. A treatment by parity (second vs. third and greater) interaction for postpartum plasma Ca concentration suggested that older cows had the greatest response to the low DCAD diet and older cows fed LOW had decreased prevalence of hypocalcemia after calving. A quadratic effect of decreasing DCAD on prepartum DMI was observed (CON = 13.6, MED = 14.0, and LOW = 13.2 kg/d). Milk production in the first 3 wk postpartum was increased linearly with decreasing DCAD (CON = 40.8, MED = 42.4, and LOW = 43.9 kg/d) and DMI in this period also tended to linearly increase (CON = 20.2, MED = 20.9, and LOW = 21.3 kg/d). Overall, effects on intake and milk yield analyzed over wk 1 to 9 postpartum were not significant. This study demonstrates that feeding lower DCAD diets prepartum improves plasma Ca status in the immediate postpartum period and results in increased DMI and milk production in the 3 wk after parturition. Compared with no anion supplementation or lower levels of anion supplementation, greater improvements were observed with the lower DCAD feeding strategy, in which an average urine pH of 5.5 to 6.0 was targeted.  相似文献   

2.
Hypocalcemia affects almost 50% of all dairy cows. Our laboratory has previously demonstrated that infusions of the serotonin precursor 5-hydroxy-l-tryptophan (5-HTP) increase circulating calcium concentrations in the Holstein transition cow. It is unknown whether feeding a negative dietary cation-anion difference (DCAD) diet alters the relationship between 5-HTP and hypocalcemia. The main objective of this study was to determine whether feeding a negative DCAD (?DCAD) diet before calving in conjunction with 5-HTP treatment could further diminish the magnitude of hypocalcemia at the time of calving. We used a randomized complete block design with a 2 × 2 factorial arrangement. Thirty-one multiparous Holstein cows were fed either a positive (+13 mEq/100 g) or negative (?13 mEq/100 g) DCAD diet 21 d before parturition and were intravenously infused daily with saline or 5-HTP (1 mg/kg) starting 7 d before the estimated date of parturition. Cows were blocked by parity and were randomly assigned to 1 of 4 treatment groups: positive DCAD plus saline, positive DCAD plus 5-HTP, negative DCAD plus saline, and negative DCAD plus 5-HTP, resulting in n = 8 per group. Total calcium (tCa), ionized calcium (iCa), and feed intake were recorded. The iCa was elevated prepartum in the ?DCAD/5-HTP group compared with the other treatment groups as well as on d 0 and 1 postpartum. Although differences in tCa were not significant across the pre- or postpartum periods, tCa was numerically higher on d 0 and significantly higher on d 1 in ?DCAD/5-HTP cows compared with all other groups. Prepartum the ?DCAD/5-HTP treatment group ate less than the other treatment groups; however, postpartum dry matter intake differences were not significant. These findings demonstrate that feeding a ?DCAD diet in conjunction with 5-HTP prepartum can increase postpartum circulating iCa concentrations and therefore diminish the magnitude of hypocalcemia at the time of parturition.  相似文献   

3.
The objectives of this experiment were to evaluate the effects of feeding diets with 2 dietary cation-anion difference (DCAD) levels and supplemented with either cholecalciferol (CH) or calcidiol (CA) during late gestation on lactation performance and energetic metabolism in dairy cows. The hypothesis was that combining a prepartum acidogenic diet with calcidiol supplementation would benefit peripartum Ca metabolism and, thus, improve energy metabolism and lactation performance compared with cows fed an alkalogenic diet or cholecalciferol. Holstein cows at 252 d of gestation were blocked by parity (28 nulliparous and 51 parous cows) and milk yield within parous cows, and randomly assigned to 1 of 4 treatments arranged as a 2 × 2 factorial, with 2 levels of DCAD (positive, +130, and negative, ?130 mEq/kg) and 2 sources of vitamin D, CH or CA, fed at 3 mg per 11 kg of diet dry matter (DM). The resulting treatment combinations were positive DCAD with CH (PCH), positive DCAD with CA (PCA), negative DCAD with CH (NCH), or negative DCAD with CA (NCA), which were fed for the last 21 d of gestation. After calving, cows were fed the same lactation diet. Body weight and body condition were evaluated prepartum and for the first 49 d postpartum. Blood was sampled thrice weekly prepartum, and on d 0, 1, 2, 3, and every 3 d thereafter until 30 d postpartum for quantification of hormones and metabolites. Lactation performance was evaluated for the first 49 d postpartum. Feeding a diet with negative DCAD reduced DM intake in parous cows by 2.1 kg/d, but no effect was observed in nulliparous cows. The negative DCAD reduced concentrations of glucose (positive = 4.05 vs. negative = 3.95 mM), insulin (positive = 0.57 vs. negative = 0.45 ng/mL), and insulin-like growth factor-1 (positive = 110 vs. negative = 95 ng/mL) prepartum. Treatments did not affect DM intake postpartum, but CA-supplemented cows tended to produce more colostrum (PCH = 5.86, PCA = 7.68 NCH = 6.21, NCA = 7.96 ± 1.06 kg) and produced more fat-corrected milk (PCH = 37.0, PCA = 40.1 NCH = 37.5, NCA = 41.9 ± 1.8 kg) and milk components compared with CH-supplemented cows. Feeding the negative DCAD numerically increased yield of fat-corrected milk by 1.0 kg/d in both nulliparous and 1.4 kg/d in parous cows. Minor differences were observed in postpartum concentrations of hormones and metabolites linked to energy metabolism among treatments. Results from this experiment indicate that replacing CH with CA supplemented at 3 mg/d during the prepartum period improved postpartum lactation performance in dairy cows.  相似文献   

4.
The objectives were to evaluate the effects of feeding diets with 2 levels of negative dietary cation-anion differences (DCAD) during the last 42 or 21 d of gestation on performance and metabolism in dairy cows. The hypothesis was that extending feeding from 21 to 42 d and reducing the DCAD from ?70 to ?180 mEq/kg of dry matter (DM) would not be detrimental to performance. Holstein cows at 230 d of gestation were blocked by parity prepartum (48 entering their second lactation and 66 entering their third or greater lactation) and 305-d milk yield, and randomly assigned to 1 of 4 treatments arranged as a 2 × 2 factorial. The 2 levels of DCAD, ?70 or ?180 mEq/kg of DM, and 2 feeding durations, the last 21 d (short) or the last 42 d (long) prepartum resulted in 4 treatments, short ?70 (n = 29), short ?180 (n = 29), long ?70 (n = 28) and long ?180 (n = 28). Cows in the short treatments were fed a diet with DCAD of +110 mEq/kg of DM from ?42 to ?22 d relative to calving. After calving, cows were fed the same diet and production and disease incidence were evaluated for 42 d in milk, whereas reproduction and survival was evaluated for 305 d in milk. Blood was sampled pre- and postpartum for quantification of metabolites and minerals. Reducing the DCAD linearly decreased prepartum DM intake between ?42 and ?22 d relative to calving (+110 mEq/kg of DM = 11.5 vs. ?70 mEq/kg of DM = 10.7 vs. ?180 mEq/kg of DM = 10.2 ± 0.4), and a more acidogenic diet in the last 21 d of the dry period reduced intake by 1.1 kg/d (?70 mEq/kg of DM = 10.8 vs. ?180 mEq/kg of DM = 9.7 ± 0.5 kg/d). Cows fed the ?180 mEq/kg of DM diet had increased concentrations of ionized Ca in blood on the day of calving (?70 mEq/kg of DM = 1.063 vs. ?180 mEq/kg of DM = 1.128 ± 0.020 mM). Extending the duration of feeding the diets with negative DCAD from 21 to 42 d reduced gestation length by 2 d (short = 277.2 vs. long = 275.3 d), milk yield by 2.5 kg/d (short = 40.4 vs. long = 37.9 ± 1.0 kg/d) and tended to increase days open because of reduced pregnancy per artificial insemination (short = 35.0 vs. long = 22.6%). Results suggest that increasing the duration of feeding diets with negative DCAD from 21 to 42 d prepartum might influence milk yield and reproduction of cows in the subsequent lactation, although yields of 3.5% fat- and energy-corrected milk did not differ with treatments. Reducing the DCAD from ?70 to ?180 mEq/kg of DM induced a more severe metabolic acidosis, increased ionized Ca concentrations prepartum and on the day of calving, and decreased colostrum yield in the first milking, but had no effects on performance in the subsequent lactation. Collectively, these data suggest that extending the feeding of an acidogenic diet beyond 21 d is unnecessary and might be detrimental to dairy cows, and a reduction in the DCAD from ?70 to ?180 mEq/kg of DM is not needed.  相似文献   

5.
The current study was undertaken to evaluate the effects of feeding timothy (Phleum pratense L.) hay differing in dietary cation-anion difference (DCAD) on the capability of cows to maintain calcium homeostasis around parturition. We hypothesized that feeding low-DCAD timothy hay during the prepartum period would induce a mild metabolic acidosis prepartum and improve calcium homeostasis postpartum with no effect on dry matter intake. Forty-one dry pregnant Holstein cows entering their second lactation or greater were used in a randomized complete block design. Timothy hay was obtained from an established timothy stand under a pivot irrigation system. Low-DCAD timothy hay was produced by fertilizing the area between the second and third pivot towers at a rate of 224 kg of CaCl2/ha, and control timothy hay (high DCAD) was grown on the area between the fourth and fifth pivot towers of the same field. The chloride concentration was 1.07 and 0.15% on a dry matter (DM) basis, and the DCAD was 1.2 and 21.6 mEq/100 g of DM for the low- and high-DCAD timothy hay, respectively. Experimental diets, containing timothy hay at 63% of dietary DM, were fed ad libitum starting 30 d before the expected calving date. The DCAD values were 1.6 vs. 14.5 mEq/100 g of DM for the low- and high-DCAD timothy-based diets, respectively. At the beginning of the study, urine pH and blood bicarbonate concentration averaged 8.22 ± 0.06 and 28.5 ± 0.3 mM, respectively. The low-DCAD timothy diet decreased urine pH compared with the high-DCAD timothy diet on d 21 (7.75 vs. 8.31), d 14 (7.69 vs. 8.22), and d 7 (7.50 vs. 8.19) before calving, and it also decreased the prepartum blood bicarbonate concentration by 2 mM. In addition, cows fed the low-DCAD timothy diet had greater blood ionized calcium concentration prepartum (1.22 vs. 1.19 mM), greater blood ionized calcium concentration at 0 and 8 h after calving, and similar prepartum dry matter intake. These results indicate that timothy hay differing in DCAD affects the acid-base balance of periparturient dairy cows, and that low-DCAD timothy hay improves calcium homeostasis postpartum with no negative effect on dry matter intake.  相似文献   

6.
《Journal of dairy science》2022,105(2):1199-1210
Dairy cows commonly undergo negative Ca balance accompanied by hypocalcemia after parturition. A negative dietary cation-anion difference (DCAD) strategy has been used prepartum to improve periparturient Ca homeostasis. Our objective was to determine the influence of a negative DCAD diet with different amounts of dietary Ca on the blood acid-base balance, blood gases, and metabolic adaptation to lactation. Multiparous Holstein cows (n = 81) were blocked into 1 of 3 dietary treatments from 252 d of gestation until parturition: (1) positive DCAD diet and low Ca (CON; containing +6.0 mEq/100 g DM, 0.4% DM Ca); (2) negative DCAD diet and low Ca (ND; ?24.0 mEq/100 g DM, 0.4% DM Ca); or (3) negative DCAD diet plus high Ca supplementation (NDCA; ?24.1 mEq/100 g DM, 2.0% DM Ca). There were 28, 27, and 26 cows for CON, ND, and NDCA, respectively. Whole blood was sampled at 0, 24, 48, and 96 h after calving for immediate determination of blood acid-base status and blood gases. Serum samples collected at ?21, ?14, ?7, ?4, ?2, ?1, at calving, 1, 2, 4, 7, 14, 21, and 28 d relative to parturition were analyzed for metabolic components. Results indicated that cows fed ND or NDCA had lower blood pH at calving but greater pH at 24 h after calving compared with CON. Blood bicarbonate, base excess, and total CO2 (tCO2) concentrations of cows in ND and NDCA groups were less than those of cows in CON at calving but became greater from 24 to 96 h postpartum. The NDCA cows had lower blood bicarbonate, base excess, and tCO2 at 48 h and greater partial pressure of oxygen after calving compared with ND. Cows fed ND or NDCA diets had lower serum glucose concentrations than CON cows before calving but no differences were observed postpartum. Serum concentrations of total protein and albumin were greater prepartum for cows in ND and NDCA groups than for those in CON. Postpartum serum urea N and albumin concentrations tended to be higher for ND and NDCA cows. Cows fed ND or NDCA diets had elevated serum total cholesterol concentration prepartum. During the postpartum period, triglycerides and NEFA of cows fed ND or NDCA diets tended to be lower than those of CON. Cows fed the NDCA diet had greater postpartum total cholesterol in serum and lower NEFA concentration at calving than ND. In conclusion, feeding a prepartum negative DCAD diet altered blood acid-base balance and induced metabolic acidosis at calving, and improved protein and lipid metabolism. Supplementation of high Ca in the negative DCAD diet prepartum was more favorable to metabolic adaptation to lactation in dairy cows than the negative DCAD diet with low Ca.  相似文献   

7.
《Journal of dairy science》2021,104(11):11537-11552
Feeding low dietary cation-anion difference (DCAD) diets is one strategy to prevent milk fever in cows. The mechanism of action, as well as whether the calcium (Ca) supply of such diets combined with this feeding regimen should meet the requirements, is still unclear. Small ruminants are commonly used as models for cows. The goal of the present study was to demonstrate basic effects of DCAD against a background of different Ca supplies in a sheep model. Twenty-three castrated male East Friesian milk sheep, aged 11 to 12 mo, were randomly assigned to 4 different feeding groups. The ration of each group was either high (highDCAD) or low in DCAD (lowDCAD) combined with adequate (nCa) or restricted Ca supply (lowCa). At baseline, serum and urine were collected from all sheep and a peripheral quantitative computed tomography of the left metatarsus was performed. After a 14-d adaptation period to the different diets, the experiment started (d 0). Urine, feces, and serum were collected on d 0, 4, 7, 14, and 22, and peripheral quantitative computed tomography was performed on d 0 and 22. On d 22, the sheep were killed and sampled for functional studies. LowDCAD was significantly associated with lower urine pH, higher urinary Ca excretion, higher ionized Ca in blood, and higher serum Ca concentrations. Blood pH and bone parameters did not differ significantly between groups. It is unclear from which compartment the high amounts of Ca excreted with urine in the lowDCAD groups originated. Interestingly, lowDCAD resulted in higher renal mRNA abundance of parathyroid hormone receptor but unaffected mRNA abundance of Ca transporters. As neither renal abundance of these transporters nor Ca excretion were influenced by dietary Ca supply, our results support the hypothesis that increased urinary Ca observed with low DCAD diets represents a loss rather than an excretion of surplus Ca.  相似文献   

8.
Hay to reduce dietary cation-anion difference for dry dairy cows   总被引:1,自引:0,他引:1  
Timothy grass has a lower dietary cation-anion difference [DCAD = (Na + K) - (Cl + S)] than other cool-season grass species. Growing timothy on low-K soils and fertilizing it with CaCl2 could further decrease its DCAD. The objective of this study was to evaluate the effects of feeding low-DCAD timothy hay on dry dairy cows. Six nonpregnant and nonlactating cows were used in a replicated 3 × 3 Latin square. Treatments were as follows: 1) control diet (control; DCAD = 296 mEq/kg of dry matter); 2) low-DCAD diet based on low-DCAD timothy hay (L-HAY; DCAD = - 24 mEq/kg of dry matter); and 3) low-DCAD diet using HCl (L-HCl; DCAD = - 19 mEq/kg of dry matter). Decreasing DCAD with L-HAY had no effect on dry matter intake (11.8 kg/d) or dry matter digestibility (71.5%). Urine pH decreased from 8.21 to 5.89 when L-HAY was fed instead of the control. Blood parameters that decreased with L-HAY were base excess (− 0.4 vs. 3.8 mM) and HCO3 (23 vs. 27 mM), and blood parameters that increased were Ca2+ (5.3 vs. 5.1 mg/dL), Cl (30.5 vs. 29.5 mg/dL), and Na+ (60.8 vs. 60.1 mg/dL). Compared with the control, L-HAY resulted in more Ca in urine (13.4 vs. 1.2 g/d). Comparing L-HAY with L-HCl, cow dry matter intake tended to be higher (11.5 vs. 9.8 kg/d), and blood pH was higher (7.37 vs. 7.31). Urine pH; total dry matter; Ca, K, P, and Mg apparent absorption; and Ca, K, Na, Cl, S, P, and Mg apparent retention were similar. Absorption as a percentage of intake of Na and Cl was lower for L-HAY as compared with L-HCl. In an EDTA-challenge test, cows fed L-HAY regained their initial level of blood Ca2+ twice as quickly as the control treatment (339 vs. 708 min); there were no differences between L-HAY and L-HCl. This experiment confirms that feeding low-DCAD hay is an effective means of decreasing the DCAD of rations and obtaining a metabolic response in dry dairy cows.  相似文献   

9.
Dietary cation-anion difference [DCAD = Na + K − Cl in mEq/kg of dry matter (DM)] increases DM intake (DMI) in cows fed diets containing rapidly degraded starch. Increased DMI of diets containing rapidly degraded starch could potentially exacerbate subacute acidosis. The objective of this study was to determine metabolic effects of increasing DCAD in low and high starch diets. Six cannulated Holstein cows were blocked into 2 groups of 3 cows and assigned to two 3 × 3 Latin squares in a split-plot design. Each group received a level of concentrate at either 20 or 40% on a DM basis. The diet containing 20% concentrate supplied 4% rapidly degraded starch, whereas the diet containing 40% concentrate supplied 22% rapidly degraded starch. Diets in each square were formulated to provide a DCAD of 0, 150, or 300 mEq/kg of DM. The 3 values were obtained by manipulating Na and Cl contents. Increasing the proportion of rapidly degraded starch decreased rumen pH and the acetate to propionate ratio but did not affect digestibility, blood acid-base status, pH of urine, and strong ion excretion. Increasing DCAD increased DMI, the effect being higher when the cows were fed the 40% concentrate diet. Increasing DCAD did not affect mean ruminal pH, molar proportion of VFA, and fiber digestibility; reduced the range of rumen pH decrease during the meal in cows fed the 40% concentrate diet; and strongly increased blood pH and blood HCO3 concentration. Increasing DCAD increased urine pH and modified the urinary excretion of minerals. With low DCAD, 70% of Cl and only 16% of Na were excreted in urine whereas with high DCAD, 33% of Cl and 53% of Na were excreted. These results suggest that DMI of cows fed diets rich in rapidly degraded starch and low DCAD was limited to maintain the blood pH in a physiological range. Increasing DCAD allowed the cows to increase DMI because of the ability of positive DCAD to maintain blood acid-base status. A localized rumen buffering effect could not be excluded and could be linked with a higher amount of HCO3 recycled into the rumen. Main mechanisms involved in regulating blood pH might be renal excretion of protons and strong ions and renal HCO3 reabsorption.  相似文献   

10.
Forty-two lactating Holstein cows 188 ± 59 d in milk were used in an 8-wk randomized complete block trial with a 2 × 3 factorial arrangement of treatments. The objective was to determine the effects of high dietary cation-anion difference (DCAD) and K:Na ratio on milk yield and composition and blood acid-base chemistry. Treatments included DCAD concentrations of 45 or 60 mEq (Na + K −Cl)/100 g of feed dry matter and K:Na ratios of 2:1, 3:1, or 4:1. Mean DCAD values were later determined to be 41 and 58. Dry matter intake was similar across treatments. Yield of milk and energy corrected milk were lower for the 3:1 K:Na ratio compared with 2:1 and 4:1 ratios. Blood urea N was lower for the highest DCAD, suggesting that DCAD possibly reduced protein degradation or altered protein metabolism and retention. Mean temperature-humidity index was 75.6 for the duration of the trial, exceeding the critical value of 72 for all weeks during the treatment period. Cows maintained relatively normal body temperature with mean a.m. and p.m. body temperature of 38.5 and 38.7°C, respectively. These body temperatures suggest that cows were not subject to extreme heat stress due to good environmental control. Results of this trial indicate that the greatest effect on milk yield occurs when either Na or K is primarily used to increase DCAD, with the lowest yield of energy-corrected milk at a 3:1 K:Na ratio (27.1 kg/d) compared with ratios of 2:1 (29.3 kg/d) and 4:1 (28.7 kg/d). Results also suggest that greater DCAD improves ruminal N metabolism or N utilization may be more efficient with a high DCAD.  相似文献   

11.
Prepartum diets influence cow performance for weeks to months postpartum. This observation leads to questions about milk yield and physiological and health responses to diets with negative dietary cation-anion difference (DCAD). Further, responses to increased intake of a diet with lower DCAD (Eq/d) have not been explored using meta-analysis. Our objectives were to explore the effects of prepartum DCAD intake on metabolism and production and health as well as the potential for differences in intake of other macrominerals to influence responses to differences in DCAD intake using classical meta-analytical methods. Not all treated groups were fed a diet with negative DCAD, and the effect studied is that of reducing the DCAD. We hypothesized that reducing DCAD intake would improve Ca metabolism and postpartum performance. We used a maximum of 58 comparisons from 31 experiments and a total of 1,571 cows. Intakes of DCAD were 2.28 Eq/d and ?0.64 Eq/d for the control, higher DCAD and treated, lower DCAD groups, respectively. Diets with lower DCAD reduced urine pH [standardized mean difference (SMD) = 1.90 and weighted mean difference (WMD) ?1.23 pH]. Intake of lower DCAD decreased prepartum DMI (SMD = 0.23; WMD = 0.29 kg/d), increased postpartum DMI (SMD = 0.40; WMD = 0.63 kg/d), and increased milk yield (SMD = 0.172). However, we found an interaction with parity; diets with lower DCAD increased milk yield in parous cows (SMD = 0.29; WMD = 1.1 kg/d) but resulted in numerically lower milk yield in nulliparous cows (SMD = ?0.20; WMD = 1.28 kg/d) compared with controls. The FCM yield increased with treatment (SMD = 0.12; WMD = 0.56 kg/d); however, yield of treated cows tended to be greater in parous cows but smaller for nulliparous cows compared with controls. Milk fat percentage, milk fat yield, and milk protein percentages were not affected by treatment, although milk protein yield tended to increase in cows fed the lower DCAD diet (SMD = 0.21; WMD = 0.02 kg/d). Treatment increased blood Ca (SMD = 0.53; WMD = 0.13 mM) and P (SMD = 0.40; WMD = 0.13 mM) on the day of calving and Ca postpartum (SMD = 0.36; WMD = 0.06 mM). Treated cows had smaller concentration of blood BHB before calving than controls (SMD = ?0.39; WMD = ?0.04 mM). Reducing DCAD in cows resulted in decreased risks of clinical hypocalcemia (risk ratio = 0.60) and retained placenta (risk ratio = 0.59), and reduced the odds of metritis (odds ratio = 0.46) and overall disease (OR = 0.61). We observed no effect on risk of abomasal displacement or mastitis and no effect of differences between treated and control cows in Ca intake (g/d) on the outcomes evaluated. A positive role for increased Mg intake between groups for increased milk fat yield and in reducing the risk of retained placenta was identified. Diets with lower DCAD improved performance of parous dairy cows, and our findings suggest a need for more studies on the effects of a lower DCAD on nulliparous transition cows.  相似文献   

12.
Bone-derived hormones play an important role in metabolism. This study examined the hypothesis that interactions between bone and energy metabolism, particularly those involving osteocalcin, are present in dairy cattle and have feedback mechanisms over time. Associations between metabolites in blood were examined in 32 Holstein cows blocked by parity and milk yield and randomly allocated to diets containing either 0.27 mg/kg dry matter (DM) calcidiol or cholecalciferol for an anticipated intake of 3 mg/d (120,000 IU/d) at 11 kg of DM, and positive (+130 mEq/kg DM) or negative (?130 mEq/kg DM) dietary cation-anion difference (DCAD) from 252 d of gestation to calving. Blood was sampled every 3 d, from 9 d prepartum to 30 d postpartum, and plasma concentrations of vitamin D3, 25-hydroxyvitamin D3, adiponectin, C-telopeptide of type 1 collagen (CTX1), glucose, insulin-like growth factor 1 (IGF1), insulin, undercarboxylated osteocalcin (uOC), and carboxylated osteocalcin (cOC) were determined. Feeding calcidiol compared with cholecalciferol increased plasma concentrations of 25-hydroxyvitamin D3 pre- (264.2 ± 8.0 vs. 61.3 ± 8.0 ng/mL) and postpartum (170.8 ± 6.2 vs. 51.3 ± 6.2 ng/mL) but decreased concentrations of vitamin D3 pre- (1.2 ± 0.6 vs. 14.5 ± 0.6 ng/mL) and postpartum (1.9 ± 0.4 vs. 3.2 ± 0.6 ng/mL). Prepartum, cows fed the negative DCAD diet had reduced concentrations of vitamin D3 and glucose compared with cows fed a positive DCAD. The combination of negative DCAD and cholecalciferol reduced IGF1 concentrations prepartum. The DCAD treatment had no effect on postpartum concentrations of metabolites. Nulliparous cows had increased concentrations of OC, CTX1, IGF1, glucose, and insulin compared with parous cows. Time series analysis identified associations between metabolites on the same day and over 3-d lags up to ±9 d that suggest feedback between 25-hydroxyvitamin D3 and vitamin D3 in the negative lags, indicating that 25-hydroxyvitamin D3 may exert feedback on vitamin D3 but not vice versa. We found evidence of a feedback mechanism between vitamin D3 and IGF1, with positive effect size (ES) on the same day and 3 d later, and negative ES 9 d later, that was more evident in cholecalciferol-fed cows. This suggests an important role of IGF1 in integrating bone metabolism with energy and protein metabolic pathways. Evidence of feedback was found between uOC and particularly cOC with IGF1, with positive ES on the same day but negative ES 6 d before and 6 d after. An association between uOC or cOC and IGF1 has not been previously identified in cattle and suggests that both uOC and cOC may have marked biological activity. Associations between OC and insulin identified in mice were not observed herein, although associations between OC and glucose were similar to those between IGF1 and glucose, supporting associations between glucose, OC, and IGF1. We provide further statistical evidence of crosstalk between vitamin D compounds, bone hormones, and energy metabolism in cattle. In particular, associations between uOC or cOC and IGF1 may provide links between prepartum diets and observations of prolonged increases in milk production and allow better control of peripartum metabolism.  相似文献   

13.
The objectives were to determine the effects of dietary cation-anion difference (DCAD) fed to pregnant cows during the last 22 d of gestation on offspring acid-base balance, metabolism, growth, and health preweaning. A total of 132 nulliparous Holstein cows were enrolled at 250 (248 to 253) d of gestation in a randomized block design. Cows were blocked by genomic merit of energy-corrected milk yield and assigned randomly to diets varying in DCAD: +200 (P200, n = 43), ?50 (N50, n = 45), or ?150 (N150, n = 44) mEq/kg of dry matter (DM). Newborn calves (15 males and 28 females in P200, 22 males and 23 females in N50, and 18 males and 26 females in N150) were followed for the first 7 or 56 d of age if males or females, respectively. Measures of acid-base balance and concentrations of minerals in blood were measured in all calves on d 0 before colostrum feeding, and on d 1, 3, and 7. Each calf was fed 3.78 L of colostrum from the respective treatment, and apparent efficiency of IgG absorption was determined. All calves were weighed at birth, and females were weighed again at 21, 42, and 56 d of age. Concentrations in serum of total calcium (tCa), total magnesium (tMg), and total phosphorus (tP) were measured up to 56 d of age; intakes of milk and starter grain DM were measured daily from 21 to 56 d of age; and incidence of disease was recorded for the first 56 d of age in females. Treatment did not affect acid-base balance measured in all calves. Calves were born with metabolic and respiratory acidosis, which reversed by 1 d of age. In the first 24 h after birth, blood pH increased from 7.215 to 7.421 and bicarbonate from 26.2 to 31.7 mM, whereas partial pressure of CO2 decreased from 64.1 to 48.7 mm of Hg in all treatments. Maternal DCAD did not affect colostrum IgG content fed to calves (P200 = 95.0 vs. N50 = 91.0 vs. N150 = 97.1 ± 4.1 g/L) or apparent efficiency of IgG absorption (P200 = 33.1 vs. N50 = 33.1 vs. N150 = 34.2 ± 1.9%). Males were born heavier than females, but maternal DCAD did not affect birth weight of all calves (P200 = 37.7 vs. N50 = 37.3 vs. N150 = 37.8 ± 0.7 kg) or daily weight gain in females in the first 56 d of life (P200 = 0.80 vs. N50 = 0.81 vs. N150 = 0.77 ± 0.03 kg/d). Treatment did not affect intake of milk (P200 = 1.11 vs. N50 = 1.04 vs. N150 = 1.19 ± 0.06 kg/d) or starter grain DM (P200 = 0.27 vs. N50 = 0.27 vs. N150 = 0.21 ± 0.06 kg/d), or measures of feed efficiency. Treatment did not affect concentrations of minerals in serum, morbidity, or age at morbidity. Manipulating the DCAD of pregnant nulliparous dams during late gestation did not affect offspring performance in the first 2 mo of age.  相似文献   

14.
Decreasing the dietary cation-anion difference (DCAD) by using anion sources before calving reduces hypocalcemia in cows at calving. Reduced DCAD from CaCl2-fertilized timothy hay achieves similar results, but the effects of feeding low-DCAD forage as silage have not been determined. The objective of this study was to evaluate the effect of low-DCAD timothy silage on dry cows. Six nonlactating and nonpregnant Holstein cows were used in a replicated 3 × 3 Latin square. Treatments were 1) control diet (DCAD = 232 mEq/kg of dry matter, DM); 2) low-DCAD diet using a low-DCAD timothy silage (LDTS; DCAD = −21 mEq/kg of DM); and 3) low-DCAD diet using a fermentation by-product (LDBP; DCAD = −32 mEq/kg of DM). Differences between dietary treatments were considered statistically significant at P ≤ 0.05 and tendencies were noted when 0.05 < P < 0.10. Compared with the control, feeding LDTS tended to decrease DM intake (10.6 vs. 12.5 kg/d) and decreased urinary pH (6.15 vs. 8.18) as well as apparent digestibility of DM (67 vs. 69%). Blood pH (7.37 vs. 7.42), HCO3 (25.3 vs. 27.5 mM), and base excess (0.4 vs. 3.1 mM) were decreased, and blood Cl (29.6 vs. 29.1 mg/dL) was increased. Apparently absorbed Na and Cl were higher and apparently absorbed K, P, and digested ADF were lower for LDTS compared with the control. Both LDTS and LDBP resulted in similar DM intake. Urinary pH tended to be higher (6.15 vs. 5.98) and percentage of digested DM was lower (67 vs. 70%) with LDTS compared with LDBP. Blood ionized Ca (5.3 vs. 5.4 mg/dL) tended to be lower and blood Cl (29.6 vs. 30.1 mg/dL) was lower, whereas blood pH (7.37 vs. 7.33), HCO3 (25.3 vs. 21.5 mM), and base excess (0.4 vs. −3.8 mM) were higher with LDTS compared with LDBP. Apparent absorption of Na, Cl, S, and P, as well as apparent digestion of acid detergent fiber, neutral detergent fiber, and N were lower, and K, Cl, S, P, Mg, and N were less retained with LDTS compared with LDBP. Results confirm that low-DCAD timothy silage can be used to produce a compensated metabolic acidosis by decreasing the DCAD of rations served to nonlactating dairy cows.  相似文献   

15.
Forages low in dietary cation-anion difference (DCAD) can be used to decrease the DCAD in prepartum diet but the extent to which DCAD needs to be reduced is of recent interest. The objective of this study was to evaluate the effectiveness of timothy hays differing in DCAD at maintaining Ca homeostasis. Six nonlactating and nonpregnant multiparous Holstein cows were fed diets containing timothy (Phleum pratense L.) hay with DCAD values of 4.1 ± 3.6 (LOW), 14.1 ± 3.0 (MED), or 25.1 ± 2.5 (HIGH) mEq per 100 g of DM in a duplicated 3 × 3 Latin square design with 14-d experimental periods. The LOW and MED hays were produced by fertilizing established timothy fields at a rate of 224 kg CaCl2 per ha, and HIGH hay was obtained from the same field where LOW hay was produced, but from a section not fertilized with CaCl2. Experimental diets, containing LOW, MED, or HIGH timothy hay at 71% of dietary DM, had DCAD values of 0.7, 7.3, and 14.4 mEq per 100 g of DM, respectively. Animals were fed at 6% of metabolic body weight, which provided 108% of their daily energy requirement. For each period, after a 12 d diet adaptation, cows were subjected to an EDTA challenge (3 cows each on d 13 and 14). Infusion of EDTA solution into the jugular vein decreases the concentration of blood ionized Ca, and the EDTA challenge protocol determined the resistance time and recovery time: the time required for the blood ionized Ca concentration to decrease to 60%, and the time required to recover to 90% of the prechallenge concentrations, respectively. Urine pH was lower when cows were fed LOW compared with HIGH diet (6.88 vs. 7.83), but urine pH when cows were fed MED diet (7.15) did not differ from that when cows received the LOW or HIGH diet. However, immediately before the EDTA challenge, blood pH was lower when cows were fed LOW or MED compared with HIGH diet (7.44 vs. 7.47). Although the resistance time was not affected by treatments, the recovery time was shorter when cows were fed the LOW compared with MED or HIGH diet (185 vs. 248 and 263 min, respectively). Blood pH decreased when cows were fed the LOW or MED diet, but the capability to maintain Ca homeostasis was enhanced only when cows received the LOW diet, in which the DCAD value was decreased to 1 mEq per 100 g of DM.  相似文献   

16.
Pregnant Holstein cows, 28 nulliparous and 51 parous, were blocked by parity and milk yield and randomly allocated to receive diets that differed in dietary cation-anion difference (DCAD), +130 or ?130 mEq/kg, and supplemented with either calcidiol or cholecalciferol at 3 mg/11 kg of dry matter from 255 d of gestation until parturition. Blood was sampled thrice weekly prepartum, and on d 0, 1, 2, 3, 6, 9, 12, 15, 18, 21, 24, 27, and 30 postpartum to evaluate effects of the diets on vitamin D, mineral and bone metabolism, and acid-base status. Blood pH and concentrations of minerals, vitamin D metabolites, and bone-related hormones were determined, as were mineral concentrations and losses in urine and colostrum. Supplementing with calcidiol increased plasma concentrations of 25-hydroxyvitamin D3, 3-epi 25-hydroxyvitamin D3, 25-hydroxyvitamin D2, 1,25-dihydroxyvitamin D3, and 24,25-dihydroxyvitamin D3 compared with supplementing with cholecalciferol. Cows fed the diet with negative DCAD had lesser concentrations of vitamin D metabolites before and after calving than cows fed the diet with positive DCAD, except for 25-hydroxyvitamin D2. Feeding the diet with negative DCAD induced a compensated metabolic acidosis that attenuated the decline in blood ionized Ca (iCa) and serum total Ca (tCa) around calving, particularly in parous cows, whereas cows fed the diet with positive DCAD and supplemented with calcidiol had the greatest 1,25-dihydroxyvitamin D3 concentrations and the lowest iCa and tCa concentrations on d 1 and 2 postpartum. The acidogenic diet or calcidiol markedly increased urinary losses of tCa and tMg, and feeding calcidiol tended to increase colostrum yield and increased losses of tCa and tMg in colostrum. Cows fed the diet with negative DCAD had increased concentrations of serotonin and C-terminal telopeptide of type 1 collagen prepartum compared with cows fed the diet with positive DCAD. Concentrations of undercarboxylated and carboxylated osteocalcin and those of adiponectin did not differ with treatment. These results provide evidence that dietary manipulations can induce metabolic adaptations that improve mineral homeostasis with the onset of lactation that might explain some of the improvements observed in health and production when cows are fed diets with negative DCAD or supplemented with calcidiol.  相似文献   

17.
The aim of this study was to investigate the effects of dietary Ca level (4.9, 9.3, and 13.6 g/kg of DM) on Ca and Mg homeostasis in dairy cows around parturition. Cows of the Swedish Red breed (n = 29) with no previous veterinary treatment for milk fever were divided into 3 groups, and each group was fed one of the different diets during the last 15 to 32 d of gestation. Calcium was added as ground limestone, and the Mg concentration was 1.8 g/kg of DM in all diets. After calving the cows were fed similar diets. Plasma was sampled twice per week until calving, and 6, 12, and 24 h, 2, 4, and 7 d after calving. Spot urine samples were collected twice weekly until calving and creatinine was used as a marker of daily urinary excretion. Fecal samples were collected 2 times per day for 5 d starting 2 wk before expected calving, and acid-insoluble ash was used as an indigestible marker to estimate digestibility. Apparent digestibility of Mg and daily Mg excretion in the urine were lower in the dry period for cows fed the highest Ca level. Plasma Mg concentration was lower on 2, 4, and 7 d after calving in cows fed the highest level of Ca. Treatment groups did not differ in plasma Ca concentration, parathyroid hormone concentration, or bone mobilization, evaluated using crosslinked carboxyterminal telopeptides of type I collagen (CTx) as a marker. Plasma Ca concentration decreased and plasma CTx concentration increased 6 h after calving. The apparent digestibility of Ca during the dry period was not affected by dietary Ca, but the cows fed 4.9 g Ca/kg of DM excreted 1.2 g of Ca/d in the urine, which was higher compared with 0.4 g/d and 0.6 g/d for the cows fed 9.3 g of Ca/kg of DM and 13.6 g of Ca/kg of DM, respectively. The results show that feeding 13.6 g of dietary Ca/kg of DM impaired the Mg absorption during the dry period, and resulted in decreased plasma Mg concentration after calving, but prepartum dietary Ca level did not affect plasma Ca, parathyroid hormone, or CTx concentrations.  相似文献   

18.
A meta-analysis of previous studies was performed to clarify the response of prepartum dairy cows to lowering dietary cation-anion difference (DCAD) and to compare different equations that have been proposed to calculate DCAD. Twenty-two published studies containing 75 treatment groups met criteria for inclusion in the meta-analysis. Five different equations used to calculate DCAD were compared for their association with clinical milk fever and urinary pH. The DCAD equation (Na + K) − (Cl + 0.6 S) was the most highly associated with clinical milk fever (R2 = 0.44) and urinary pH (R2 = 0.85). Lowering DCAD reduced clinical milk fever but also reduced DM intake. Lowered DCAD was associated with reduced urinary pH, blood bicarbonate, and blood CO2, suggesting a metabolic acidosis with respiratory compensation. Blood pH was very slightly lowered by lowered DCAD. Lowering DCAD increased ionized Ca in blood before and at calving. The model predicted that lowering DCAD from +300 to 0 mEq/kg reduced risk for clinical milk fever from 16.4 to 3.2%, reduced urinary pH from about 8.1 to 7.0, and reduced DM intake by 11.3%.  相似文献   

19.
The objective was to determine if the reduction in dry matter (DM) intake of acidogenic diets is mediated by inclusion of acidogenic products, content of salts containing Cl, or changes in acid-base status. The hypothesis was that a decrease in intake is mediated by metabolic acidosis. Ten primigravid Holstein cows at 148 ± 8 d of gestation were used in a duplicated 5 × 5 Latin square design. The dietary cation-anion difference (DCAD) of diets and acid-base status of cows were manipulated by incorporating an acidogenic product or by adding salts containing Cl, Na, and K to the diets. Treatments were a base diet (T1; 1.42% K, 0.04% Na, 0.26% Cl; DCAD = 196 mEq/kg); the base diet with added 1% NaCl and 1% KCl (T2; 1.83% K, 0.42% Na, 1.23% Cl; DCAD = 194 mEq/kg); the base diet with added 7.5% acidogenic product, 1.5% NaHCO3, and 1% K2CO3 (T3; 1.71% K, 0.54% Na, 0.89% Cl; DCAD = 192 mEq/kg); the base diet with added 7.5% acidogenic product (T4; 1.29% K, 0.13% Na, 0.91% Cl; DCAD = ?114 mEq/kg); and the base diet with 7.5% acidogenic product, 1% NaCl, and 1% KCl (T5; 1.78% K, 0.53% Na, 2.03% Cl; DCAD = ?113 mEq/kg). Periods lasted 14 d with the last 7 d used for data collection. Feeding behavior was evaluated for 12 h in the last 2 d of each period. Reducing the DCAD by feeding an acidogenic product reduced blood pH (T1 = 7.450 vs. T2 = 7.436 vs. T3 = 7.435 vs. T4 = 7.420 vs. T5 = 7.416) and induced a compensated metabolic acidosis with a reduction in bicarbonate, base excess, and partial pressure of CO2 in blood, and reduced pH and strong ion difference in urine. Reducing the DCAD reduced DM intake 0.6 kg/d (T1 = 10.3 vs. T4 = 9.7 kg/d), which was caused by the change in acid-base status (T2 + T3 = 10.2 vs. T4 + T5 = 9.6 kg/d) because counteracting the acidifying action of the acidogenic product by adding salts with strong cations to the diet prevented the decline in intake. The decline in intake caused by metabolic acidosis also was observed when adjusted for body weight (T2 + T3 = 1.75 vs. T4 + T5 = 1.66% BW). Altering the acid-base status with acidogenic diets reduced eating (T2 + T3 = 6.7 vs. T4 + T5 = 5.9 bouts/12 h) and chewing (T2 + T3 = 14.6 vs. T4 + T5 = 13.5 bouts/12 h) bouts, and extended meal duration (T2 + T3 = 19.8 vs. T4 + T5 = 22.0 min/meal) and intermeal interval (T2 + T3 = 92.0 vs. T4 + T5 = 107.7 min). Results indicate that reducing the DCAD induced a compensated metabolic acidosis and reduced DM intake, but correcting the metabolic acidosis prevented the decline in DM intake in dry cows. The decrease in DM intake in diets with negative DCAD was mediated by metabolic acidosis and not by addition of acidogenic product or salts containing Cl.  相似文献   

20.
Thirty-two lactating Holstein cows (225 ± 63 d in milk) were used in a 6-wk trial to determine the effect of dietary cation-anion difference (DCAD) and dietary crude protein (CP) concentration on milk and component yield, acid-base status, and serum AA concentrations during hot weather. Treatments were arranged as a 2 × 2 factorial within a randomized complete block design to provide 15 or 17% CP and a DCAD of 25 or 50 mEq (Na + K - Cl)/100 g of dry matter (DM). A DCAD × CP interaction was detected for milk yield; milk yield was less for high DCAD than for low DCAD for the high-CP diets. No differences were noted at low dietary CP. Milk fat percentage was greater for high DCAD than for low DCAD, and high-CP diets supported greater milk fat percentage than low-CP diets. No differences were observed among treatments for dry matter intake or milk protein percentage. Serum total AA and essential AA concentrations and ratio of essential AA:total AA were greater for high DCAD. These results suggest that increasing DCAD improves AA availability for protein synthesis by taking the place of AA that would otherwise be used for maintenance of acid-base balance. A better understanding of the mechanisms behind this AA-sparing effect will improve management of protein nutrition in the lactating dairy cow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号