首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The cell signaling docking protein p130cas became tyrosine-phosphorylated in SH-SY5Y human neuroblastoma cells during induced differentiation with 12-O-tetradecanoylphorbol-13-acetate (TPA) and serum or a combination of basic fibroblast growth factor (bFGF) and insulin-like growth factor-I (IGF-I). The differentiating cells develop a neuronal phenotype with neurites and growth cones and sustained activation of protein kinase C (PKC) and pp60c-src. The TPA-induced p130cas phosphorylation increased within 5 min of stimulation and persisted for at least 4 days, whereas bFGF/IGF-I-induced p130cas phosphorylation was biphasic. However, the increase in tyrosine phosphorylation of p130cas was not restricted to differentiation inducing stimuli. The phosphorylation was blocked by the specific PKC inhibitor GF 109203X, and transient transfection with active PKC-epsilon induced p130cas tyrosine phosphorylation. pp60c-src, known to directly phosphorylate p130cas in other cell systems, was not activated after stimulation with TPA or bFGF/IGF-I for up to 30 min, and the initial p130cas phosphorylation was resistant to the Src family kinase inhibitor herbimycin A. However, in long term stimulated cells, herbimycin A blocked the induced phosphorylation of p130cas. Also, overexpression of src induced phosphorylation of p130cas. p130cas protein and phosphorylated p130cas were present in growth cones isolated from differentiated SH-SY5Y cells. Inhibition of PKC activity in differentiating cells with GF 109203X leads to a rapid retraction of growth cone filopodia, and p130cas phosphorylation decreased transiently (within minutes). Growth cones isolated from these cells were virtually devoid of phosphorylated p130cas. These data suggest a function for p130cas as a PKC downstream target in SH-SY5Y cells and possibly also in their growth cones.  相似文献   

2.
For the related Src kinases, a close correlation exists between elevated tyrosine kinase activity and cell transformation. However, the involvement of pp60c-src in hepatocellular carcinoma (HCC) remains obscure. The aim of this study was to evaluate whether pp60c-src tyrosine kinase activity is elevated in HCC. We analyzed the kinase activity of pp60c-src in normal liver tissue, chronic hepatitis liver tissue, and tumorous and adjacent nontumorous portions of HCC tissue from patients and Long-Evans cinnamon (LEC) rats that are known to develop liver cancer spontaneously. The kinase activity of pp60c-src was rarely detected in the normal human liver tissue and chronic hepatitis liver tissue, but it was elevated in tumorous and nontumorous portions of HCC tissue. Furthermore, the kinase activity of pp60c-src was significantly elevated in tumorous tissues compared with nontumorous tissues. The kinase activity of pp60c-src was also higher in poorly differentiated HCC. In addition, the kinase activity of pp60c-src increased proportionately with the development of HCC of LEC rats. Our results suggest that activation of the protooncogene product pp60c-src may play an important role in the malignant transformation of hepatocytes in human and LEC rats, and that it may be closely related to the histopathological grading of human HCC.  相似文献   

3.
Three groups of phosphoproteins have been distinguished, basing on the velocity and extent of phosphorylation in platelets stimulated with collagen. pp60c-src constituted the first group; the increase in its phosphorylation was the highest and most rapid (maximal in 30 s after the addition of collagen). pp80/85 and non-identified protein of 65 kDa formed the second group; the increase in their phosphorylation was twice smaller than that of pp60c-src, and reached its maximum 60 s after the addition of collagen. pp120, pp72syk, and two non-identified phosphoproteins of 90 and 75 kDa constituted the third group; the increase in their phosphorylation was 4-10-fold lower than that of pp60c-src and reached its maximum after 180 s. We conclude that the phosphorylation of pp60c-src is important for the change of shape of platelets, the phosphorylation of pp80/85 and pp65 for the initiation of the formation of aggregates and the phosphorylation of the third group of phosphoproteins for the formation of massive aggregates. This conclusion was supported by using a monoclonal anti-GPIb antibody, which did not inhibit the shape change of platelets and did not inhibit pp60c-src phosphorylation. This antibody inhibited aggregate formation as well as tyrosine phosphorylation of proteins belonging to the second and the third group of phosphoproteins.  相似文献   

4.
pp60c-src and the structurally related members of the Src family are non-receptor tyrosine kinases that reside within the cell associated with cell membranes and appear to transduce signals from transmembrane receptors to the cell interior. Many intracellular pathways can be stimulated upon Src activation, and a variety of cellular consequences can result, including morphological changes and cell proliferation. pp60c-src activity is normally suppressed by phosphorylation on its carboxy-terminal tail by an enzyme known as CSK. Various cellular stimuli or mutations within pp60c-src can activate its endogenous kinase activity. In this paper, we review aspects of pp60c-src activation and regulation and discuss results obtained in our laboratory in two experimental systems: (i) in melanoma cell lines and primary pigmented normal human melanocytes and (ii) using activated mutant forms of purified human pp60c-src protein.  相似文献   

5.
pp60(c-src) and pp62(c-yes) are protein tyrosine kinases whose specific activities are increased in primary colorectal carcinomas. Activity of pp60(c-src) is further increased in colorectal liver metastases. This study was undertaken to compare pp60(c-src) and pp62(c-yes) expression and activity in human colorectal carcinoma liver metastases and to determine the potential prognostic significance of differences in activation of these two kinases. The pp60(c-src) and pp62(c-yes) tyrosine kinase activities and protein levels relative to those in normal colonic mucosa were determined using an immune complex kinase assay and immunoblot analysis in tissue specimens from 22 patients with primary colorectal carcinoma and synchronous metastatic liver disease and from 9 patients with metachronous colorectal carcinoma liver metastases. Of the primary colon tumors, 64% of the tumors contained elevated activities of both pp60(c-src) and pp62(c-yes). For liver metastases, however, only 10% had activation of both tyrosine kinases, 61% had elevated pp60(c-src) activity only, and 23% had elevated pp62(c-yes) activity only. Analysis of synchronous metastases from primary tumors with elevated activities in both kinases demonstrated that in 71% of these patients, the activity of either pp60(c-src) or pp62(c-yes) decreases relative to the primary tumor. Protein levels of pp60(c-src) and pp62(c-yes) in primary carcinomas and metastases remained unchanged from levels in normal colonic mucosa. These results demonstrate that differential regulation of the activities of pp60(c-src) and pp62(c-yes) occurs during tumor progression. Patients with either synchronous or metachronous liver metastases and elevated pp62(c-yes) kinase activity have biologically more aggressive disease and a worse prognosis than patients without elevated pp62(c-yes) activity in their liver metastases (median survival, 13 months versus 30 months, P < 0.005, Wilcoxon signed rank test). Analysis of patients with synchronous liver metastases also demonstrated a worse prognosis for those with elevated pp62(c-yes) kinase activity (P < 0.05, Wilcoxon signed rank test).  相似文献   

6.
The kinetics of PI-PLCgamma1 toward a water-soluble substrate (inositol 1,2-cyclic phosphate, cIP) and phosphatidylinositol (PI) in detergent mixed micelles were monitored by 31P NMR spectroscopy. That cIP is also a substrate (Km = approximately 15 mM) implies a two-step mechanism (intramolecular phosphotransferase reaction to form cIP followed by cyclic phosphodiesterase activity to form inositol-1-phosphate (I-1-P)). PI is cleaved by PI-PLCgamma1 to form cIP and I-1-P with the enzyme specific activity and ratio of products (cIP/I-1-P) regulated by assay temperature, pH, Ca2+, and other amphiphilic additives. Cleavage of both cIP and PI by the enzyme is optimal at pH 5. The effect of Ca2+ on PI-PLCgamma1 activity is unique compared with other isozymes enzymes: Ca2+ is necessary for the activity and low Ca2+ activates the enzyme; however, high Ca2+ inhibits PI-PLCgamma1 hydrolysis of phosphoinositides (but not cIP) with the extent of inhibition dependent on pH, substrate identity (cIP or PI), substrate presentation (e.g. detergent matrix), and substrate surface concentration. This inhibition of PI-PLCgamma1 by high Ca2+ is proposed to derive from the divalent metal ion-inducing clustering of the PI and reducing its accessibility to the enzyme. Amphiphilic additives such as phosphatidic acid, fatty acid, and sodium dodecylsulfate enhance PI cleavage in micelles at pH 7.5 but not at pH 5.0; they have no effect on cIP hydrolysis at either pH value. These different kinetic patterns are used to propose a model for regulation of the enzyme. A key hypothesis is that there is a pH-dependent conformational change in the enzyme that controls accessibility of the active site to both water-soluble cIP and interfacially organized PI. The low activity enzyme at pH 7.5 can be activated by PA (or phosphorylation by tyrosine kinase). However, this activation requires lipophilic substrate (PI) present because cIP hydrolysis is not enhanced in the presence of PA.  相似文献   

7.
The proto-oncogene product pp60(c-src) is the cellular homologue of the Rous sarcoma transforming gene, and it is a non-receptor-linked and membrane-associated tyrosine kinase. There is a close correlation between elevated pp60(c-src) activity and cell transformation. We have recently reported that pp60(c-src) was activated in hepatocellular carcinoma (HCC) of human and Long-Evans cinnamon (LEC) rats. However, the mechanisms involved in this process remain unknown. C-terminal Src kinase (Csk) is a novel cytoplasmic protein tyrosine kinase that inactivates the members of the Src family protein tyrosine kinase in vitro. We investigated the role of Csk in hepatocarcinogenesis by analyzing the location, amount of Csk, and its kinase activity levels in nontumorous cirrhotic and tumorous sections of HCC of patients and an animal model of LEC rats. Csk tyrosine kinase activity was significantly reduced in tumorous tissues compared with nontumorous sections of patients as well as LEC rats. A single immunoreactive band at 50 kd was detected with Csk antibody in normal liver (NL), chronic hepatitis (CH), and nontumorous cirrhotic (NTC) segments of HCC of patients and LEC rats. In human tumorous tissues, Western blot revealed a 53-kd immunoreactive band, which was slightly larger than the usual 50-kd band of Csk. These results suggest that the reduced activity of tyrosine kinase of Csk may play an important role in the malignant transformation of hepatocytes in human and LEC rat, and the appearance of 53-kd Csk-related protein may be closely involved in the progression of cirrhosis to HCC in humans, and that 50-kd Csk may act as an antioncogene through the negative regulation of pp60(c-src) in the development of human HCC.  相似文献   

8.
On the basis of the efficient substrate for p60c-src protein tyrosine kinase (PTK) YIYGSFK-NH2 (1) (Km = 55 microM) obtained by combinatorial methods, we have designed and synthesized a series of conformationally and topographically constrained substrate-based peptide inhibitors of this enzyme, which showed IC50 values in the low-micromolar range (1-3 microM). A "rotamer scan" was performed by introducing the four stereoisomers of beta-Me(2')Nal in the postulated interaction site of the peptide inhibitor 23(IC50 = 1.6 microM). This substitution led to selective and potent inhibitors of p60c-src PTK; however, no substantial difference in potency was observed among them. This and the results of the "stereochemical scan" performed at residues 2 and 7 of 3 (peptides 19-21), which form the disulfide bond, may suggest that the enzyme active site does not have rigid topographic requirements and thus is able to achieve important conformational changes to bind the ligand as long as the pharmacophore pattern in the inhibitor is conserved. Two new potent iodo-containing nonphosphorylatable tyrosine analogues were also incorporated into our lead inhibitory sequence 23, producing the most potent inhibitors for p60c-src PTK identified thus far in our studies. Compounds 29 and 30 exhibit IC50 values of 0.13 and 0.54 microM, respectively. Peptide 29 is 420-fold more potent than the parent peptide 1. Selectivity studies of peptides 23-30 toward p60c-src, Lyn, and Lck PTK showed in general high Lyn/Src and moderate Lck/Src selectivity ratios. We found that the chi1 space constraints of the specialized amino acids, introduced at position 3 of the peptide lead 23, were not as important as the configuration of the Calpha of that residue to recognize the subtle chemical environment surrounding the active site of Src and Lck PTK, as reflected on the obtained Lck/Src selectivity ratios.  相似文献   

9.
We recently reported the identification of GIYWHHY as an efficient and specific substrate for p60(c-src) protein tyrosine kinase (PTK) by screening a secondary random peptide library (Q. Lou et al., Bioorg. Med. Chem., 4: 677-682, 1996). Based on the primary structure of GIYWHHY, we designed and synthesized several pseudosubstrate-based peptide inhibitors. Some of these peptide inhibitors are highly potent and specific with IC50 in the low micromolar range. Because both YIYGSFK and GIYWHHY are efficient and specific substrates for p60(c-src) PTK, chimeric branched peptides based on these two sequences were synthesized. These branched peptides inhibit p60(c-src) PTK with high potency, indicating that the enzyme-active site of p60(c-src) PTK can accommodate more than a linear motif. This may explain why seemingly several peptides with very different linear structures can all be phosphorylated by this enzyme.  相似文献   

10.
We have recently determined that -Ile-Tyr- were the two critical residues as a peptide substrate for p60c-src protein tyrosine kinase (Lou, Q. et al., Lett. Peptide Sci., 1995, 2, 289). Here, we report on the design and synthesis of a secondary 'one-bead, one-compound' combinatorial peptide library based on this dipeptide motif (XIYXXXX, where X = all 19 eukaryotic amino acids except for cysteine). This secondary library was screened for its ability to be phosphorylated by p60c-src PTK using [gamma 32P]ATP as a tracer. Five of the strongest [32P]-labeled peptide-beads were identified and microsequenced: GIYWHHY, KIYDDYE, EIYEENG, EIYEEYE, and YIYEEED. A solid-phase phosphorylation assay was used to evaluate the structure-activity relationship of GIYWHHY. It was determined that Ile2, Tyr3, His5, and His6 were crucial for its activity as a substrate.  相似文献   

11.
The effect of protein tyrosine kinases (PTKs) on L-type calcium channel currents was studied in cultured rat and human retinal pigment epithelial cells. Barium currents through L-type channels were measured in the perforated patch-clamp technique and identified by using the L-type calcium channel opener Bay K8644 (10(-6) M). Application of the PTK blockers genistein (5 x 10(-6) M) or lavendustin A (5 x 10(-6) M) led to a decrease of L-type currents. The inactive genistein analog daidzein (10(-5) M) showed no effect on calcium channels. Intracellular application of pp60(c-src) (30 U/ml) via the patch-pipette during the conventional whole-cell configuration led to an increase of L-type currents. The protein kinase A and protein kinase G blocker H9 (10(-6) M) showed no effect on L-type currents; genistein reduced the current in the presence of H9. The protein kinase C (PKC) blocker chelerythrine (10(-5) M) reduced the L-type current; additional inhibition of PTK by lavendustin showed an additional reduction of currents. Intracellular application of myristoylated PKC substrate (5 x 10(-5) M) for PKC inhibition led to a fast rundown of L-type current amplitudes. Intracellularly applied myristoylated PKC substrate (10(-4) M) together with pp60(c-src) showed no effect on L-type current. Up-regulation of PKC by 10(-6) M phorbol-12-myristate-13-acetate (PMA) had no effect on the L-type current amplitude. However, genistein in cells pretreated with PMA led to an increase of the L-type currents. Intracellular application of pp60(c-src) in PMA-treated cells led to a reduction of L-type currents. We conclude that in the resting cell, PTK and PKC regulate L-type calcium channels in an additive manner. L-type channels appeared as a site of integration of PTK activation and of PKC-dependent pathways. The activity of PKC determines whether PTK decreases or increases L-type channel activity.  相似文献   

12.
An endo-1,3-beta-glucanase was purified from a cell wall autolysate of Aspergillus fumigatus. This beta-glucanase activity was associated with a glycosylated 74-kDa protein. Using a sensitive colorimetric assay and a high-performance anion-exchange chromatography with a pulsed electrochemical detector for product analysis, it was shown that the endoglucanase hydrolysed exclusively linear 1,3-beta-glucan chains, had an optimum pH of 7.0 and an optimum temperature of 60 degrees C. A substrate kinetic study gave a Km value of 0.3 mg/ml for soluble (laminarin and laminari-oligosaccharides) and 1.18 mg/ml for insoluble (curdlan) 1,3-beta-glucan. Laminari-oligosaccharide degradation, analysed by HPLC, showed that the endoglucanase bind to the subtrate at several positions and suggested that the active site of the enzyme recognized five glucose units linked by a 1,3-beta bond. The association of the present endo-1,3-beta-glucanase with the cell wall of A. fumigatus suggests a putative role for this enzyme during cell-wall morphogenesis.  相似文献   

13.
We have previously reported that gastrin induces a rapid and transient tyrosine phosphorylation of phospholipase C gamma 1 (PLC gamma 1) in association with inositol 1,4,5-trisphosphate (IP3) formation in rat colonic epithelial cells (34). In this study, we demonstrate that gastrin regulates IP3 formation mainly through PLC gamma 1 isozyme. Immunoblotting analysis revealed the expression of PLC beta 3 and -gamma 1, but not PLC beta 1, -beta 2, or -beta 4 in the rat colonic epitheliums. To explore what PLC isozyme(s) modulates gastrin effect on IP3, immunoneutralizing antibody to PLC beta 1, -beta 3, or -gamma 1 was introduced into the colonic cells using a lipid carrier. The gastrin-stimulated increase in IP3 concentration was specifically prevented by anti-PLC gamma 1 but not by anti-PLC beta 1 or -beta 3 antibody. Immunoprecipitation assays have also revealed that gastrin promoted an increase in tyrosine phosphorylation and co-precipitation of a 60 kDa src kinase with PLC gamma 1. Administration of antibody specific to pp60c-src into the colonic cells prevented the gastrin-stimulated increases in IP3. Tyrosine phosphorylation of PLC gamma 1 may be a major mechanism through which gastrin regulates IP3 level in the colonic cells. Pretreatment of cells with the tyrosine kinase inhibitor genistein abrogated gastrin's effect on IP3, while extended pretreatment with pertussis toxin, a G-protein inhibitor, did not affect the ability of gastrin to stimulate IP3 formation. Colonic cells expressed the G alpha i subunits1-3; however, immunoblotting analysis did not reveal any difference in G alpha i proteins' expression between control and gastrin treated cells. The results provide direct evidence that gastrin regulates IP3 level by a signaling mechanism that involves PLC gamma 1 and pp60c-src kinase.  相似文献   

14.
Some cytochrome P450 catalyzed reactions show atypical kinetics, and these kinetic processes can be grouped into five categories: activation, autoactivation, partial inhibition, substrate inhibition, and biphasic saturation curves. A two-site model in which the enzyme can bind two substrate molecules simultaneously is presented which can be used to describe all of these observed kinetic properties. Sigmoidal kinetic characteristics were observed for carbamazepine metabolism by CYP3A4 and naphthalene metabolism by CYPs 2B6, 2C8, 2C9, and 3A5 as well as dapsone metabolism by CYP2C9. Naphthalene metabolism by CYP3A4 and naproxen metabolism by CYP2C9 demonstrated nonhyperbolic enzyme kinetics suggestive of a low Km, low Vmax component for the first substrate molecule and a high Km, high Vmax component for the second substrate molecule. 7, 8-Benzoflavone activation of phenanthrene metabolism by CYP3A4 and dapsone activation of flurbiprofen and naproxen metabolism by CYP2C9 were also observed. Furthermore, partial inhibition of 7, 8-benzoflavone metabolism by phenanthrene was observed. These results demonstrate that various P450 isoforms may exhibit atypical enzyme kinetics depending on the substrate(s) employed and that these results may be explained by a model which includes simultaneous binding of two substrate molecules in the active site.  相似文献   

15.
16.
Human leukemic cell line K562 is induced to differentiate into the megakaryocytic lineage by stimulation with 12-O-tetradecanoylphorbol-13-acetate (TPA). We demonstrate here that TPA stimulation increases tyrosine phosphorylation of an 80-kDa protein at an early stage of megakaryocytic differentiation and that this 80-kDa protein is identical with cortactin. Since tyrosine kinase Syk was activated by TPA stimulation, we examined the possibility that cortactin is a potential substrate of Syk in K562 cells. TPA-induced tyrosine phosphorylation of cortactin was decreased profoundly by overexpression of dominant-negative Syk. Furthermore, cortactin was associated with Syk even before TPA stimulation. Since cortactin was previously referred as an 80/85-kilodalton pp60src substrate, we examined the association between Src and cortactin, whereas its association could not be detected. These data suggest that Syk phosphorylates cortactin in K562 cells upon TPA treatment.  相似文献   

17.
In the present article we have examined if the interaction of the Ca2+-binding protein, annexin II tetramer (AIIt) with the plasma membrane phospholipids or with the submembranous cytoskeleton, effects the accessibility of the tyrosine phosphorylation site of AIIt. In the presence of Ca2+, pp60(c-src) catalyzed the incorporation of 0.22 +/- 0.05 mol of phosphate/mol of AIIt (mean +/- S.D., n = 5). The Ca2+-dependent binding of AIIt to purified adrenal medulla plasma membrane or phosphatidylserine vesicles stimulated the pp60(c-src)-dependent phosphorylation of AIIt to 0.62 +/- 0.04 mol of phosphate/mol of AIIt (mean +/- S.D., n = 5) or 0.93 +/- 0.07 mol of phosphate/mol of AIIt (mean +/- S.D., n = 5), respectively. Phosphatidylserine- or phosphatidylinositol-containing vesicles but not vesicles composed of phosphatidylcholine or phosphatidylethanolamine, stimulated the phosphorylation of AIIt. In contrast, the binding of AIIt to F-actin resulted in the incorporation of only 0.04 +/- 0.04 mol of phosphate/mol of AIIt (mean +/- S.D., n = 5). These results suggest that the interaction of AIIt with plasma membrane and not the submembranous cytoskeleton, activates the tyrosine phosphorylation of AIIt by inducing a conformational change in the protein resulting in the enhanced exposure or accessibility of the tyrosine-phosphorylation site.  相似文献   

18.
In the yeast Saccharomyces cerevisiae, choline kinase (ATP:choline phosphotransferase, EC 2.7.1.32) is the product of the CKI gene. Choline kinase catalyzes the committed step in the synthesis of phosphatidylcholine by the CDP-choline pathway. The yeast enzyme was overexpressed 106-fold in Sf-9 insect cells and purified 71.2-fold to homogeneity from the cytosolic fraction by chromatography with concanavalin A, Affi-Gel Blue, and Mono Q. The N-terminal amino acid sequence of purified choline kinase matched perfectly with the deduced sequence of the CKI gene. The minimum subunit molecular mass (73 kDa) of purified choline kinase was in good agreement with the predicted size (66.3 kDa) of the CKI gene product. Native choline kinase existed in oligomeric structures of dimers, tetramers, and octomers. The amounts of the tetrameric and octomeric forms increased in the presence of the substrate ATP. Antibodies were raised against the purified enzyme and were used to identify choline kinase in insect cells and in S. cerevisiae. Maximum choline kinase activity was dependent on Mg2+ ions (10 mM) at pH 9.5 and at 30 degrees C. The equilibrium constant (0.2) for the reaction indicated that the reverse reaction was favored in vitro. The activation energy for the reaction was 6.26 kcal/mol, and the enzyme was labile above 30 degrees C. Choline kinase exhibited saturation kinetics with respect to choline and positive cooperative kinetics with respect to ATP (n = 1.4-2.3). Results of the kinetic experiments indicated that the enzyme catalyzes a sequential Bi Bi reaction. The Vmax for the reaction was 138.7 micromol/min/mg, and the Km values for choline and ATP were 0.27 mM and 90 microM, respectively. The turnover number per choline kinase subunit was 153 s-1. Ethanolamine was a poor substrate for the purified choline kinase, and it was also poor inhibitor of choline kinase activity. ADP inhibited choline kinase activity (IC50 = 0.32 mM) in a positive cooperative manner (n = 1.5), and the mechanism of inhibition with respect to ATP and choline was complex. The regulation of choline kinase activity by ATP and ADP may be physiologically relevant.  相似文献   

19.
Ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis, becomes upregulated during cell proliferation and transformation. Here we show that intact ODC activity is needed for the acquisition of a transformed phenotype in rat 2R cells infected with a temperature-sensitive mutant of Rous sarcoma virus. Addition of the ODC inhibitor alpha-difluoromethyl ornithine (DFMO) to the cells (in polyamine-free medium) before shift to permissive temperature prevented the depolymerization of filamentous actin and morphological transformation. Polyamine supplementation restored the transforming potential of pp60v-src. DFMO did not interfere with the expression of pp60v-src or its in vitro tyrosine kinase activity. The tyrosine phosphorylation of most cellular proteins, including ras GAP, did not either display clear temperature- or DFMO-sensitive changes. A marked increase was, however, observed in the tyrosine phosphorylation of phosphatidylinositol 3-kinase and proteins of 33 and 36 kD upon the temperature shift, and these hyperphosphorylations were partially inhibited by DFMO. A DFMO-sensitive increase was also found in the total phosphorylation of calpactins I and II. The well-documented association of GAP with the phosphotyrosine-containing proteins p190 and p62 did not correlate with transformation, but a novel 42-kD tyrosine phosphorylated protein was complexed with GAP in a polyamine- and transformation-dependent manner. Further, tyrosine phosphorylated proteins of 130, 80/85, and 36 kD were found to coimmunoprecipitate with pp60v-src in a transformation-related manner. Altogether, this model offers a tool for sorting out the protein phosphorylations and associations critical for the transformed phenotype triggered by pp60v-src, and implicates a pivotal role for polyamines in cell transformation.  相似文献   

20.
In this report we present some of the biochemical properties of the enzyme, here called pp28(PTK), isolated from particulate fraction of rat spleen (1). The kinase is very susceptible for polyions as regulators of the enzymatic activity. The polyanions like dextran sulfate or heparin inhibited, and polycations such as spermidin, protamin, poly-L-lysine and some random polypeptides containing tyrosine besides a basic amino acid, stimulated the enzyme markedly. The kinase showed high sensitivity towards class IA salts. In the casein phosphorylation reaction the apparent Km value for ATP was 4 microM. An unusual property is associated with autophosphorylation which leads to a reduced activity towards external substrates. Some kinase inhibitors described in the literature were tested for their potency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号