共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We present a high-resolution profile of the temporal and spatial immunoreactivity for dopamine and serotonin in the Drosophila embryonic CNS and the expression pattern of two enzymes important in their biosynthesis, DOPA decarboxylase (DDC) and tyrosine hydroxylase (TH). DDC performs the final catalytic step in the synthesis of both biogenic amines and TH is the rate-limiting enzymatic step in the synthesis of dopamine. We show that the DDC-expressing neurons synthesize either serotonin or dopamine, but not both, and that the two neuronal subtypes follow similar axonal pathways. In addition, we describe two DDC-expressing cell types that do not synthesize detectable levels of serotonin or dopamine. We also describe a novel set of TH-expressing neurons that are detected only during embryogenesis. The initial appearance of both enzymes and their metabolites during embryogenesis shows unexpected diversity. The onset of Ddc expression is heterogeneous, such that certain classes of cells express high levels of DDC several hours before others. High levels of TH immunoreactivity are observed at a time when DDC immunoreactivity is barely detectable. Despite low levels of DDC, both dopamine and serotonin are first detected at the earliest stages of DDC expression. We discuss the implications of these observations in the differentiation of dopamine and serotonin neurons. 相似文献
3.
4.
Transplantation studies have demonstrated that glia-depleted areas of the CNS can be reconstituted by the introduction of cultured cells. Thus, the influx of Schwann cells into glia-free areas of demyelination in the spinal cord can be prevented by the combined introduction of astrocytes and cells of the O-2A lineage. Although Schwann cell invasion of areas of demyelination is associated with destruction of astrocytes, the transplantation of rat tissue culture astrocytes ("type-1") alone cannot suppress this invasion, indicating a role for cells of the O-2A lineage in reconstruction of glial environments. By transplanting different glial cell preparations and manipulating lesions so as to prevent meningeal cell and Schwann cell proliferation it is possible to demonstrate that the behaviour of tissue culture astrocytes ("type-1") and astrocytes derived from O-2A progenitor cells ("type-2") is different. In the presence of meningeal cells, tissue culture astrocytes clump together to form cords of cells. In contrast, type-2 astrocytes spread throughout glia-free areas in a manner unaffected by the presence of meningeal cells or Schwann cells. Thus, progenitor-derived astrocytes show a greater ability to fill glia-free areas than tissue culture astrocytes. Similarly, when introduced into infarcted white matter in the spinal cord, progenitor-derived astrocytes fill the malacic area more effectively than tissue culture astrocytes, although axons do not regenerate into the reconstituted area. 相似文献
5.
Here we investigate the mechanisms by which Hox genes compete for the control of positional identity. Functional dominance is often observed where different Hox genes are co-expressed, and frequently the more posteriorly expressed Hox gene is the one that prevails, a phenomenon known as posterior prevalence. We use dpp674, a visceral mesoderm-specific enhancer of decapentaplegic (dpp), to investigate functional dominance among Hox genes molecularly. We find that posterior prevalence does not adequately describe the regulation of dpp by Hox genes. Instead, we find that abdominal-A (abd-A) dominates over the more posterior Abdominal-B (Abd-B) and the more anterior Ultrabithorax (Ubx). In the context of the dpp674 enhancer, abd-A functions as a repressor whereas Ubx and Abd-B function as activators. Thus, these results suggest that other cases of Hox competition and functional dominance may also be understood in terms of competition for target gene regulation in which repression dominates over activation. 相似文献
6.
To understand the mechanisms that guide migrating cells, we have been studying the embryonic migrations of the C. elegans canal-associated neurons (CANs). Here, we describe two screens used to identify genes involved in CAN migration. First, we screened for mutants that died as clear larvae (Clr) or had withered tails (Wit), phenotypes displayed by animals lacking normal CAN function. Second, we screened directly for mutants with missing or misplaced CANs. We isolated and characterized 30 mutants that defined 14 genes necessary for CAN migration. We found that one of the genes, ceh-10, specifies CAN fate. ceh-10 had been defined molecularly as encoding a homeodomain protein expressed in the CANs. Mutations that reduce ceh-10 function result in Wit animals with CANs that are partially defective in their migrations. Mutations that eliminate ceh-10 function result in Clr animals with CANs that fail to migrate or express CEH-23, a CAN differentiation marker. Null mutants also fail to express CEH-10, suggesting that CEH-10 regulates its own expression. Finally, we found that ceh-10 is necessary for the differentiation of AIY and RMED, two additional cells that express CEH-10. 相似文献
7.
One of the more striking sexual dimorphisms in the adult brain is the synaptic patterning in some hypothalamic nuclei. In the arcuate nucleus (ARC) males have twice the number of axosomatic and one-half the number of axodendritic spine synapses as females. The opposite pattern is observed in the immediately adjacent ventromedial nucleus (VMN). In both cases, early exposure to testosterone dictates adult dimorphism, but the exact timing, mechanism, and site of steroid action remain unknown. Astrocytes also exhibit sexual dimorphisms, and their role in mediating neuronal morphology is becoming increasingly evident. Using Golgi-Cox impregnation to examine neuronal morphology and glial fibrillary acidic protein immunoreactivity (GFAP-IR) to characterize astrocytic morphology, we compared structural differences in dendrites and astrocytes from the ARC and VMN in postnatal day 2 rat pups from four hormonally different groups. Consistent with previous observations, testosterone exposure induced a rapid and dramatic stellation response in ARC astrocytes. Coincident with this change in astrocytic morphology was a 37% reduction in the density of dendritic spines on ARC neurons. In contrast, astrocytes in the VMN were poorly differentiated and did not respond to testosterone exposure, nor were there any changes in neuronal dendrite spine density. However, VMN neurons exposed to testosterone had almost double the number of branches compared with that in controls. These data suggest that the degree of maturation and the differentiation of hypothalamic astrocytes in vivo are correlated with the ability of neurons to sprout branches or spines in response to steroid hormones and may underlie regionally specific differences in synaptic patterning. 相似文献
8.
The midline glia of the Drosophila embryonic nerve cord undergo a reduction in cell number after facilitating commissural tract morphogenesis. The numbers of midline glia entering apoptosis at this stage can be increased by a loss or reduction of function in genes of the spitz group or Drosophila EGF receptor (DER) pathway. Argos, a secreted molecule with an atypical EGF motif, is postulated to function as a DER antagonist. In this work, we assess the role of argos in the determination of midline glia cell number. Although all midline glia express DER, argos expression is restricted to the midline glia which do not enter apoptosis. Fewer midline glia enter apoptosis in embryos lacking argos function. Ectopic expression of argos is sufficient to remove all DER-expressing midline glia from the nerve cord, even those that already express argos. DER expression is not terminated in the midline glia after spitz group signaling triggers changes in gene expression. It is therefore likely that an attenuation of DER signaling by Argos is integrated with the augmentation of DER signaling by Spitz throughout the period of reduction of midline glia number. We suggest that signaling by Spitz but not Argos is restricted to adhesive junctions. In this manner, midline glia not forming signaling junctions remain sensitive to juxtacrine Argos signaling, while an autocrine Argos signal is excluded by the adhesive junction. 相似文献
9.
Most of the neurons of the ventral nerve cord send out long projecting axons which cross the midline. In the Drosophila central nervous system (CNS) cells of the midline give rise to neuronal and glial lineages with different functions during the establishment of the commissural pattern. Here we present evidence that beside the previously known NETRIN/FRAZZLED (DCC) signalling system an additional attractive system(s) is operating in the developing embryonic nervous system of Drosophila. Attractive cues appear to be provided by the midline neurons. We show that the glial cells present repulsive signals to the previously described ROUNDABOUT receptor in addition to a permissive contact-dependent signal helping commissural growth cones across the midline. A novel repulsive component is encoded by the karussell gene. Furthermore the midline glial cells separate anterior and posterior commissures. By genetic criteria we demonstrate that some of the genes we have identified are acting in the midline glia whereas other genes are required in the midline neurons. The results lead to a detailed model relating different cellular functions to axonal patterning at the midline. 相似文献
10.
Localization of neuronal and glial glutamate transporters 总被引:1,自引:0,他引:1
JD Rothstein L Martin AI Levey M Dykes-Hoberg L Jin D Wu N Nash RW Kuncl 《Canadian Metallurgical Quarterly》1994,13(3):713-725
The cellular and subcellular distributions of the glutamate transporter subtypes EAAC1, GLT-1, and GLAST in the rat CNS were demonstrated using anti-peptide antibodies that recognize the C-terminal domains of each transporter. On immunoblots, the antibodies specifically recognize proteins of 65-73 kDa in total brain homogenates. Immunocytochemistry shows that glutamate transporter subtypes are distributed differentially within neurons and astroglia. EAAC1 is specific for certain neurons, such as large pyramidal cortical neurons and Purkinje cells, but does not appear to be selective for glutamatergic neurons. GLT-1 is localized only to astroglia. GLAST is found in both neurons and astroglia. The regional localizations are unique to each transporter subtype. EAAC1 is highly enriched in the cortex, hippocampus, and caudate-putamen and is confined to pre- and postsynaptic elements. GLT-1 is distributed in astrocytes throughout the brain and spinal cord. GLAST is most abundant in Bergmann glia in the cerebellar molecular layer brain, but is also present in the cortex, hippocampus, and deep cerebellar nuclei. 相似文献
11.
The complex nervous networks found throughout the mammalian gut--the enteric nervous system--are histologically, ultrastructurally, and, to some extent, functionally--similar to the central nervous system. The glial cells of the small enteric ganglia are generally classified as Schwann or satellite cells, since they are found in the peripheral nervous system, possess nuclei which ultrastructurally resemble those of Schwann cells and are derived from the neural crest. However, it has been argued that these cells resemble astrocytes of the central nervous system with respect to gross and fine structure, and their relationship with the enteric neurones and their processes. In immunohistochemical studies of these cells, both in frozen sections of gut wall and in tissue culture preparations of the enteric plexuses, we found evidence that the enteric glial cells are rich in glial fibrillary acidic protein (GFAP), a protein associated with the 100 A glial intermediate filaments, and hitherto believed to be specific to astrocytes of the central nervous system only. 相似文献
12.
13.
14.
Glial-neuronal communication was studied by monitoring the effect of intercellular glial Ca2+ waves on the electrical activity of neighboring neurons in the eyecup preparation of the rat. Calcium waves in astrocytes and Müller cells were initiated with a mechanical stimulus applied to the retinal surface. Changes in the light-evoked spike activity of neurons within the ganglion cell layer occurred when, and only when, these Ca2+ waves reached the neurons. Inhibition of activity was observed in 25 of 53 neurons (mean decrease in spike frequency, 28 +/- 2%). Excitation occurred in another five neurons (mean increase, 27 +/- 5%). Larger amplitude Ca2+ waves were associated with greater modulation of neuronal activity. Thapsigargin, which reduced the amplitude of the glial Ca2+ increases, also reduced the magnitude of neuronal modulation. Bicuculline and strychnine, inhibitory neurotransmitter antagonists, as well as 6-Nitro-7-sulphamoylbenzo[f]quinoxaline-2,3-dione (NBQX) and D(-)-2-amino-7-phosphonoheptanoic acid (D-AP7), glutamate antagonists, reduced the inhibition of neuronal activity associated with glial Ca2+ waves, suggesting that inhibition is mediated by inhibitory interneurons stimulated by glutamate release from glial cells. The results suggest that glial cells are capable of modulating the electrical activity of neurons within the retina and thus, may directly participate in information processing in the CNS. 相似文献
15.
A clonal, neuronally-differentiating cell line, RN33B, was previously developed by retroviral infection of neural tissue derived from embryonic Sprague-Dawley raphé nuclei with a retrovirus encoding the temperature-sensitive allele of SV40 large T-antigen. In the present study, RN33B cells were transplanted into two target areas of the raphé nuclei, the spinal cord and hippocampal formation, of adult allogeneic hosts. Prior to transplantation, RN33B cells were infected in vitro with a retroviral vector carrying the Escherichia coli lacZ reporter gene and were visualized in vivo using a beta-galactosidase immunohistochemical technique. RN33B cells were seen throughout the spinal cord and hippocampal formation of the adult hosts at 15 days post-transplantation. T-antigen-immunoreactive nuclei were detected where RN33B cells were observed, but in much greater numbers than beta-galactosidase-immunoreactive cells. Bipolar RN33B cells were found in the spinal cord grey matter. RN33B cells with multipolar morphologies were visualized in the hippocampal and subicular pyramidal cell layers, and also in the dentate gyrus granule cell and polymorph layers, while bipolar RN33B cells were seen in the remainder of the hippocampal formation. The results suggest that immortalized neural cell lines of CNS origin can differentiate in the adult CNS with their ultimate morphology being determined by local tissue signals. We speculate that endogenous neutrophins may significantly influence RN33B cell differentiation in vivo. 相似文献
16.
BACKGROUND AND PURPOSE: Our purpose was to evaluate the ability of transcranial color-coded Doppler sonography (TCCD) to 1) identify Guglielmi detachable coils (GDCs) within intracranial aneurysms, 2) show endovascular aneurysmal occlusion and patency of parent and branch arteries, 3) determine the flow velocities within parent arteries and major branches before and after treatment, and 4) assess persistence of aneurysmal occlusion. METHODS: The sonographic appearance of GDCs was established experimentally by TCCD (2 to 2.5 MHz), which was then performed in 40 patients with 43 aneurysms occluded by GDCs. The patency of parent arteries and major branches was assessed qualitatively and compared with the immediate posttherapeutic angiographic appearance in every patient. Flow velocities were selectively measured and compared before and after treatment in 21 parent arteries and 24 major branches. Follow-up TCCD studies performed in 26 patients were compared with angiographic (16 cases) and MR angiographic (10 cases) findings for signs of recanalization of the treated aneurysms. RESULTS: The GDCs were identified experimentally and in the patients as hyperechoic structures of the size and shape, and in the location of, the treated aneurysm in 41 of 43 cases. TCCD in accordance with angiography showed a lack of flow in 42 aneurysms and the presence of flow signal in one large aneurysm. Patency of the parent artery was shown in 40 aneurysms and in all branches. Follow-up TCCD showed the coils unchanged in 23 of 26 cases. In three large aneurysms, TCCD indicated recanalization and reappearance of a flow signal separate from the parent artery. CONCLUSION: TCCD is a reliable, noninvasive means to assess parent artery and major branch patency and to reveal a lack of hemodynamic compromise in the vicinity of aneurysms after endovascular therapy. On follow-up examinations, TCCD was able to detect signs of aneurysmal recanalization. 相似文献
17.
Terminal divisions of myogenic lineages in the Drosophila embryo generate sibling myoblasts that found larval muscles or form precursors of adult muscles. Alternative fates adopted by sibling myoblasts are associated with distinct patterns of gene expression. Genes expressed in the progenitor cell are maintained in one sibling and repressed in the other. These differences depend on an asymmetric segregation of Numb between sibling cells. In numb mutants, muscle fates associated with repression are duplicated and alternative muscles are lost. If numb is overexpressed the reverse transformation occurs. Numb acts to block Notch-mediated repression of genes expressed in muscle progenitor cells. Thus asymmetric cell divisions are essential determinants of muscle fates during myogenesis in Drosophila 相似文献
18.
The development and differentiation of bipotential glial precursor cells has been studied extensively in tissue culture, but little is known about the distribution and fate of these cells within intact animals. To analyze the development of glial progenitor cells in the developing rat cerebellum, we utilized immunofluorescent, immunocytochemical, and autoradiographic techniques. Glial progenitor cells were identified with antibodies against the NG2 chondroitin-sulfate proteoglycan, a cell-surface antigen of 02A progenitor cells in vitro, and the distribution of this marker antigen was compared to that of marker antigens that identify immature astrocytes, mature astrocytes, oligodendrocyte precursors, and mature oligodendrocytes. Cells expressing the NG2 antigen appeared in the cerebellum during the last 3-4 days of embryonic life. Over the first 10 days of postnatal life, the NG2-labeled cells incorporated 3H-thymidine into their nuclei and their total number increased. At all ages examined, the NG2-labeled cells did not contain either vimentin-like or glial fibrillary acidic protein (GFAP)-like immunoreactivity, suggesting that they do not develop along an astrocytic pathway. NG2-labeled cells of embryonic animals expressed GD3 ganglioside antigens, a property of oligodendrocyte precursors, whereas NG2-positive cells of postnatal animals did not express GD3 immunoreactivity. Nevertheless, the NG2-labeled cells of the nascent white matter expressed oligodendrocyte-specific marker antigens. Cells lying outside of the white matter continued to express the NG2 antigen. In adult animals, the NG2-labeled cells incorporated 3H-thymidine. Glial cells isolated from adult animals and grown in tissue culture express the NG2 antigen and display the phenotypic plasticity characteristic of 02A progenitor cells. These findings demonstrate that a population of glial progenitor cells is extensive within both young and adult animals. 相似文献
19.
During sexual development, mycelial cells from most filamentous fungi differentiate into typical fruiting bodies. Here, we describe the isolation and characterization of the Sordaria macrospora developmental mutant per5, which exhibits a sterile phenotype with defects in fruiting body maturation. Cytological investigations revealed that the mutant strain forms only ascus precursors without any mature spores. Using an indexed cosmid library, we were able to complement the mutant to fertility by DNA-mediated transformation. A single cosmid clone, carrying a 3.5-kb region able to complement the mutant phenotype, has been identified. Sequencing of the 3.5-kb region revealed an open reading frame of 2.1 kb interrupted by a 66-bp intron. The predicted polypeptide (674 amino acids) shows significant homology to eukaryotic ATP citrate lyases (ACLs), with 62 to 65% amino acid identity, and the gene was named acl1. The molecular mass of the S. macrospora ACL1 polypeptide is 73 kDa, as was verified by Western blot analysis with a hemagglutinin (HA) epitope-tagged ACL1 polypeptide. Immunological in situ detection of the HA-tagged polypeptide demonstrated that ACL is located within the cytosol. Sequencing of the mutant acl1 gene revealed a 1-nucleotide transition within the coding region, resulting in an amino acid substitution within the predicted polypeptide. Further evidence that ACL1 is essential for fruiting body maturation comes from experiments in which truncated and mutated versions of the acl1 gene were used for transformation. None of these copies was able to reconstitute the fertile phenotype in transformed per5 recipient strains. ACLs are usually involved in the formation of cytosolic acetyl coenzyme A (acetyl-CoA), which is used for the biosynthesis of fatty acids and sterols. Protein extracts from the mutant strain showed a drastic reduction in enzymatic activity compared to values obtained from the wild-type strain. Investigation of the time course of ACL expression suggests that ACL is specifically induced at the beginning of the sexual cycle and produces acetyl-CoA, which most probably is a prerequisite for fruiting body formation during later stages of sexual development. We discuss the contribution of ACL activity to the life cycle of S. macrospora. 相似文献