首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A minimum-time problem on deceleration of rotations of a free rigid body affected by a small control torque with close but not identical coefficients is studied; such a problem can be considered as a quasi-optimal control problem. In addition, the rigid body is affected by a small deceleration viscous friction torque. The body is assumed to be dynamically asymmetric. A quasi-optimal feedback control for the deceleration of rotations of the rigid body is constructed, the optimal control time, and phase trajectories are found. The quasi-stationary trajectories are analyzed.  相似文献   

2.
This paper addresses the problem of the time-optimal braking of rotations of a dynamically symmetric rigid body under a small control moment in the ellipsoidal range with close unequal values of the ellipsoid’s semiaxes. This problem is considered a problem of quasi-optimal control. The body is assumed to have a moving mass connected to it through elastic coupling with quadratic dissipation. In addition, the body is exposed to a small braking moment of the linear resistance of the medium. The problem of synthesizing the quasi-optimal braking of the rotations of a dynamically symmetric body in a resisting medium is investigated analytically and numerically. An approximate solution is found by the phase-averaging of the processional motion. The qualitative properties of quasi-optimal motion are analyzed and the corresponding graphs are presented.  相似文献   

3.
This paper presents a new method of actively controlling the vibration of a flexible beam by using a rigid body motion actuator based on flow source control. The proposed flow source controller generates a control input of a rotating angle instead of a torque that acts as an effort source control input. It is shown that the proposed flow source control improves the vibration suppression performance when disturbance forces such as friction forces are involved in the rigid body motion dynamics. The stability and the robustness to disturbance of the flow source controller are compared with an effort source controller. An optimal control theory is used to design the flow source vibration controller and a conventional PD controller is used for the motor position controller. Computer simulations and experimental results on a rotating beam system show that the vibration control performance achieved by the proposed flow source control method is superior to that of an effort source control method.  相似文献   

4.
ABSTRACT

In this study, the control of a two-wheeled stair-climbing inverted pendulum robot and its climbing motion are analyzed and discussed. The robot adopts a state-feedback controller with a feed-forward constant to stabilize the body and achieve step-climbing motion. The control parameter is considered based on the dynamic model motion on a flat surface and the static model of motion on the step. For climbing stairs with a narrow step tread, a constant torque is applied to reduce the space required for recovering the body stability after climbing. The stability of the robot is numerically analyzed by analyzing the orbital stability of its limit cycle. The stability analysis shows that the control method can achieve a stable stair-climbing motion. The effectiveness of the control method is demonstrated through an experiment. The result indicates that the robot can climb the stairs, and the required time for climbing a single step is approximately 1.8?s.  相似文献   

5.
《Advanced Robotics》2013,27(4):325-343
In this study, we deal with the twisting motion of a falling cat robot by means of two torque inputs around her waist. The cat robot consists of two rigid columns and has two internal actuators at the joint to generate torque inputs around normal coordinates. This system is a nonholonomic system whose angular momentum is conserved. We formulate the state equation that has torque inputs to the joint by using the nonholonomic constraint and the Lagrange-d'Alembert principle. Then, we transform the system into a linear parameter varying system. In order to improve error learning of a final-state control method, we provide the initial inputs in order to determine the appropriate rotation direction in the early stage of the twisting motion. Next, we introduce the method of the artificial potential function to the final-state control in order to make the maximum bending angle small. The feedforward torque inputs can be obtained by the final-state control in order to bring the system from the initial state to the final state in the desired time. In simulations, we also demonstrate that the twolink cat robot can land on her feet by using the 2-d.o.f. control system even when her waist damping coefficient varies.  相似文献   

6.
A new robust controller is proposed to regulate both flexural vibrations and rigid body motion of a hydraulically driven flexible ann. The controller combines backsteppmg control and sliding mode to arrive at a controller capable of dealing with a nonlinear system with uncertainties. The sliding mode technique is used to achieve an asymptotic joint angle and vibration regulation in the presence of payload uncertainty by providing a virtual torque input at the joint while the backstepping technique is used to regtthte the spool position of a hydraulic valve to provide the required torque. It is shown that there is no chatter in the hydraulic valve, which results in smoother operation of the system.  相似文献   

7.
This article presents a novel hybrid actuator scheme to actively and robustly control the endpoint position of a very flexible single-link manipulator. The control scheme consists of two actuators; a motor mounted at the beam hub and a piezoceramic bonded to the surface of the flexible link. The control torque of the motor, which produces a desired angular motion, is determined by employing the sliding mode control theory on the equation of motion of the rigid link having the same mass as that of the proposed flexible link. The torque is then applied to the flexible manipulator to activate the commanded motion. During the motion, the undesirable oscillation caused by the torque, based on the rigid link dynamics, is actively suppressed by applying a feedback control voltage to the piezoceramic actuator. Consequently, desired tip motion is achieved. Both regulating and tracking control responses are analyzed through experimental implementation to demonstrate high performance characteristics to be accrued from the proposed methodology. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
《Advanced Robotics》2013,27(4):345-359
As each joint actuator of a robot manipulator has a limit value of torque, the motion control system should consider the torque saturation. In order to consider the torque saturation in a transient state, this paper proposes a new redundant motion control system using the autonomous consideration algorithm on torque saturation. A Jacobian matrix of a redundant robot manipulator can select the optimal one considering its motion energy in the steady state. When the motion control system carries out fast motion and quick disturbance suppression, a high joint torque is required in a transient state. In the experimental results, under the condition of having a large payload torque and a fast motion reference, the proposed redundant manipulator control realizes the quick robot motion robustly and smoothly.  相似文献   

9.
This article presents an adaptive technique to tune controller gains for the motion synchronization of two gimbal systems by using a recursive least square method in the real-time fashion. In the master-slave configuration, the slave gimbal system follows the master’s motion while the master tracks the reference. In order for the slave gimbal system to synchronize with the motion of the master gimbal system, the dynamic difference between two systems is compensated by the controller gains. The controller gains of the slave are adaptively adjusted by the recursive least square method to cope with the deviation. The performances of three control schemes such as an independent PD control, a dependent torque control, and an RLS torque control scheme are evaluated by the experimental studies for the low cost gimbal systems. Experimental studies confirm that the RLS-based adaptive scheme actually outperforms by adjusting controller gains for the motion synchronization of the master and slave configuration.  相似文献   

10.
Power reduction in the ankle joints of a biped robot is considered inthis paper. Ankles of human beings have small torque and are veryflexible within a certain range of motion (very stiff near and beyondthis range). This characteristic makes foot landing soft and gives agood contact between its sole and the ground. This feature can beimplemented in a biped robot by using a small actuator for the anklejoints. A small actuator consumes less energy and reduces the weightof the leg. With less power in the ankle joints, robot walkingbecomes more difficult to control. This problem can be solved byproviding a feedback control mechanism as presented in this paper. Thecontrol mechanism uses the motion of the body and the swinging leg toeliminate instability caused by the weak ankle. Two locomotionexamples, standing and walking, were investigated respectively toshow the validity of the proposed control scheme. In standing, thecontrol input is the displacement of the ankle joint of thesupporting leg. The control mechanism decides the bending angle ofthe body and the position of the swinging leg. For walking, only thebending angle of the body is used to avoid the discontinuity of thecontrol input. Experimental results are presented to show theeffectiveness of the control mechanism.  相似文献   

11.
This work deals with the modelling and control of a riderless bicycle (see Figure 1). It is assumed here that the bicycle is controlled by a pedalling torque, a directional torque, and by a rotor mounted on the crossbar that generates a tilting torque.In particular, a kinematic model of the bicycle's motion is derived by using its dynamic model. Then, using this kinematic model, a constraint point-to-point control problem is dealt with.  相似文献   

12.
A novel technique to estimate motion of the center of mass (COM) for a biped robot is proposed. A Kalman filter is synthesized where the time evolution of COM is predicted from the external force and corrected based on kinematic estimation and torque equilibrium. They complementarily work to compensate the initial estimation offset, the error accumulation, and errors in modeled mass properties. It makes use of the authors’ previous method to estimate the translational and rotational motion of the base body from inertial information and joint angle measurements. The information about torque equilibrium helps to reduce an uncertainty of the height of COM and to improve the estimation accuracy of it by utilizing an interference of the horizontal and vertical motion of COM. The parameters are tuned based on error analyses in mass properties and sensor signals. A comparative study showed a better performance of the proposed method than other methods through dynamics simulations.  相似文献   

13.
The subject of this work is the dynamics of a rotating spacecraft. The spacecraft is modeled as a main rigid body connected to two flexible solar panels. The orbital motion of the whole spacecraft with a constant angular velocity is considered, interacting with small rigid motions of the main body, and small elastic deformations and infinitesimal vibrations of the solar panels. A continuum approach based on the Rayleigh–Ritz discretization is used to describe the distributed flexibility in the spacecraft. Rayleigh–Ritz discretization functions used are the clamped modes of the solar panels. This method enables us to construct the impedance matrix of the whole system relating to the displacement of the main body and the external torque. A spectral expansion of this impedance matrix, in terms of these clamped modes is obtained in the frequency domain. The numerical results presented show that for small values of orbital angular velocity, the vibration motion frequencies of the flexible parts (solar panels) are not perturbed substantially. Moreover, when great values of orbital angular velocity are simulated, these frequencies change considerably. The present investigation based on the Rayleigh–Ritz discretization shows the effect of the interaction between the orbital motion of the whole spacecraft and the vibration motions of the flexible parts.  相似文献   

14.
A multi-degree-of-freedom (DOF) ultrasonic motor can rotate in three DOFs and does not generate noise. In addition, with an appropriate preloading mechanism, it can generate high torque for its size. The multi-DOF ultrasonic motor is, therefore, anticipated for use as a servomotor in the next generation of robots. However, for several reasons, there have been few applications of multi-DOF ultrasonic motors. One reason is the difficulty in designing a proper preloading mechanism for the motor and the limitation of the size of the stators. Another is the difficulty in developing a control algorithm, due to the motor's complex and changing dynamical characteristics, and the serious jaggy motion caused by its very quick response. This paper proposes a preloading mechanism and control algorithm for a multi-DOF ultrasonic motor, considering the motor's application to an actual auditory tele-existence robot, TeleHead. TeleHead is an elaborate dummy head robot that has a 3-DOF neck mechanism. The proposed methods achieve smooth and fast multi-DOF rotating motion of the dummy head with little time delay. In the preloading method, tensioned springs generate high preloading force and make up for the lack of torque by compensating for the resistance torque generated by the inclining motion of the dummy head. In the control algorithm, high-DOF motion is managed by high-frequency switching of the rotating axis, and smooth and quick trajectory tracking motion is achieved by introducing feed-forward control using an inverse model, with multiresolution acquired by feedback-error learning. Experimental results verify the high performance of these methods.  相似文献   

15.
谈大龙  宋亦旭  韩建达 《机器人》2002,24(4):289-292
本文分析了轮式移动机器人在运行过程中由于动力 学不确定性引起的力矩扰动,并提出了一种基于传感器的移动机器人控制方法.在利用线加 速度传感器实时测量机器人车体加速度信号的基础上,实现了车体加速度反馈控制,实验 证明了该方法的有效性.  相似文献   

16.
《Advanced Robotics》2013,27(7-8):755-769
As each joint actuator of a robot manipulator has a limit value of torque, the motion control system should consider the torque saturation. Conventional motion control based on robust acceleration controller cannot consider the torque saturation and it often causes an oscillated or wrong response. This paper proposes a new autonomous consideration method of joint torque saturation for robust manipulator motion control. The proposed method consists of three on-line autonomous algorithms. These algorithms are the torque limitation algorithm in joint space, the adjustment algorithm of motion control in Cartesian space, and the adjustment algorithm of motion reference in Cartesian space. The robot motion control using the proposed algorithms realizes smooth and robust robot motion response.  相似文献   

17.
This study proposes a quantitative evaluation method for assessing active wearable assistive devices that can efficiently support the human body. We utilize a humanoid robot to simulate human users wearing assistive devices owing to various advantages offered by the robot such as quantitative torque measurement from sensors and highly repeatable motion. In this study, we propose a scheme for estimating the supportive torques supplied by a device called stationary torque replacement. To validate the reliability of this evaluation method by using a humanoid robot, we conducted measurements of human muscular activity during assisted motion. Analysis of the measured muscle activity revealed that a humanoid robot closely simulates the actual usage of assistive devices. Finally, we showed the feasibility of the proposed evaluation method through an experiment with the humanoid robot platform HRP-4 and the Muscle Suit active assistive device. With the proposed method, the supportive effects of the assistive device could be measured quantitatively in terms of the static supportive torque acting directly on the body of a simulated human user.  相似文献   

18.
This work deals with the modelling and control of a riderless bicycle rolling on a moving plane. It is assumed here that the bicycle is controlled by a pedalling torque, a directional torque and by a rotor mounted on the crossbar that generates a tilting torque.In particular, a kinematic model of the bicycle’s motion is derived by using its dynamic model. Then, using this kinematic model, the expressions for the applied torques are obtained.  相似文献   

19.
The tracking control of a disk rolling without slipping on the horizontal (X, Y)-plane is considered. The motion of the disk can be controlled via a tilting torque and a pedaling torque. The concept of path controllability of the disk is introduced and then used to calculate control laws such that the disk tracks a given path in the (X, Y)-plane  相似文献   

20.
This paper deals with boundary feedback stabilization of a flexible beam clamped to a rigid body and free at the other end. The system is governed by the beam equation nonlinearly coupled with the dynamical equation of the rigid body. The authors propose a stabilizing boundary feedback law which suppresses the beam vibrations so that the whole structure rotates about a fixed axis with any given small constant angular velocity. The stabilizing feedback law is composed of control torque applied on the rigid body and either boundary control moment or boundary control force (or both of them) at the free end of the beam. It is shown that in any case the beam vibrations are forced to decay exponentially to zero  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号