首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Through proteolysis and peptide mass determination using mass spectrometry, a peptide mass map (PMM) can be generated for protein identification. However, insufficient peptide mass accuracy and protein sequence coverage limit the potential of the PMM approach for high-throughput, large-scale analysis of proteins. In our novel approach, nonlabile protons in particular amino acid residues were replaced with deuteriums to mass-tag proteins of the S. cerevisiae proteome in a sequence-specific manner. The resulting mass-tagged proteolytic peptides with characteristic mass-split patterns can be identified in the data search using constraints of both amino acid composition and mass-to-charge ratio. More importantly, the mass-tagged peptides can further act as internal calibrants with high confidence in a PMM to identify the parent proteins at modest mass accuracy and low sequence coverage. As a result, the specificity and accuracy of a PMM was greatly enhanced without the need for peptide sequencing or instrumental improvements to obtain increased mass accuracy. The power of PMM has been extended to the unambiguous identification of multiple proteins in a 1D SDS gel band including the identification of a membrane protein.  相似文献   

2.
Pan S  Gu S  Bradbury EM  Chen X 《Analytical chemistry》2003,75(6):1316-1324
Identification of proteins with low sequence coverage using mass spectrometry (MS) requires tandem MS/MS peptide sequencing. It is very challenging to obtain a complete or to interpret an incomplete tandem MS/MS spectrum from fragmentation of a weak peptide ion signal for sequence assignment. Here, we have developed an effective and high-throughput MALDI-TOF-based method for the identification of membrane and other low-abundance proteins with a simple, one-dimensional separation step. In this approach, several stable isotope-labeled amino acid precursors were selected to mass-tag, in parallel, the human proteome of human skin fibroblast cells in a residue-specific manner during in vivo cell culturing. These labeled residues can be recognized by their characteristic isotope patterns in MALDI-TOF MS spectra. The isotope pattern of particular peptides induced by the different labeled precursors provides information about their amino acid compositions. The specificity of peptide signals in a peptide mass mapping is thus greatly enhanced, resolving a high degree of mass degeneracy of proteolytic peptides derived from the complex human proteome. Further, false positive matches in database searching can be eliminated. More importantly, proteins can be accurately identified through a single peptide with its m/z value and partial amino acid composition. With the increased solubility of hydrophobic proteins in SDS, we have demonstrated that our approach is effective for the identification of membrane and low-abundant proteins with low sequence coverage and weak signal intensity, which are often difficult for obtaining informative fragment patterns in tandem MS/MS peptide sequencing analysis.  相似文献   

3.
Peptide mass mapping using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry in conjunction with interrogation of sequence databases is a powerful tool for the identification of proteins. Glycosylated proteins often yield poor MALDI peptide maps due to shielding of proteolytic cleavage sites and the presence of modified peptides. Here we demonstrate that enzymatic removal of N-linked glycans with simultaneous partial (50%) 18O-labeling of glycosylated asparagine residues prior to proteolysis and MALDI peptide mass mapping can overcome these problems. As a result, more peptides are observed in MALDI spectra which, in turn, increases the specificity of subsequent database searches. Furthermore, the detection of a labeled peptide directly translates into partial sequence information as N-linked carbohydrates are exclusively attached to asparagine residues that form part of the NXS/T sequence. The mass of the formerly glycosylated peptide together with the NXS/T sequence pattern represents a discriminating criterion for database searching which, on average, increases the search specificity by a factor of 100. This procedure allows the unambiguous identification of glycoproteins that would otherwise require sequencing and, at the same time, enables the identification of N-glycosylation sites with higher sensitivity than previously possible.  相似文献   

4.
A method for rapid and unambiguous identification of proteins by sequence database searching using the accurate mass of a single peptide and specific sequence constraints is described. Peptide masses were measured using electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry to an accuracy of 1 ppm. The presence of a cysteine residue within a peptide sequence was used as a database searching constraint to reduce the number of potential database hits. Cysteine-containing peptides were detected within a mixture of peptides by incorporating chlorine into a general alkylating reagent specific for cysteine residues. Secondary search constraints included the specificity of the protease used for protein digestion and the molecular mass of the protein estimated by gel electrophoresis. The natural isotopic distribution of chlorine encoded the cysteine-containing peptide with a distinctive isotopic pattern that allowed automatic screening of mass spectra. The method is demonstrated for a peptide standard and unknown proteins from a yeast lysate using all 6118 possible yeast open reading frames as a database. As judged by calculation of codon bias, low-abundance proteins were identified from the yeast lysate using this new method but not by traditional methods such as tandem mass spectrometry via data-dependent acquisition or mass mapping.  相似文献   

5.
A method for improving the identification of peptides in a shotgun proteome analysis using accurate mass measurement has been developed. The improvement is based upon the derivatization of cysteine residues with a novel reagent, 2,4-dibromo-(2'-iodo)acetanilide. The derivitization changes the mass defect of cysteine-containing proteolytic peptides in a manner that increases their identification specificity. Peptide masses were measured using matrix-assisted laser desorption/ionization Fourier transform ion cyclotron mass spectrometry. Reactions with protein standards show that the derivatization of cysteine is rapid and quantitative, and the data suggest that the derivatized peptides are more easily ionized or detected than unlabeled cysteine-containing peptides. The reagent was tested on a 15N-metabolically labeled proteome from M. maripaludis. Proteins were identified by their accurate mass values and from their nitrogen stoichiometry. A total of 47% of the labeled peptides are identified versus 27% for the unlabeled peptides. This procedure permits the identification of proteins from the M. maripaludis proteome that are not usually observed by the standard protocol and shows that better protein coverage is obtained with this methodology.  相似文献   

6.
The use of mass spectrometry to measure hydrogen exchange rates for individual proteins in complex mixtures is described. Incorporation of stable-isotope-labeled (SIL) amino acids into a protein of interest during overexpression in bacteria produced distinctive isotope patterns in mass spectra of peptic peptides from the labeled protein. The isotope pattern was used as a signature for peptides originating from the SIL protein. In addition, stable-isotope labeling simplified identification of the peptic peptides by providing partial amino acid composition information. Despite the complex isotope patterns associated with SIL peptides, hydrogen exchange rates could still be measured for peptides from SIL protein and were found to be the same as exchange rates for unlabeled protein. Hydrogen exchange in a single protein of interest was measured in a complex mixture of proteins, a bacterial cell lysate. This methodology, which includes easy recognition of peptic peptides from the protein(s) of interest during hydrogen exchange studies in heterogeneous systems, will permit analysis of structural properties and dynamics of large protein complexes and complex protein systems.  相似文献   

7.
Integration of mass spectrometry in analytical biotechnology.   总被引:9,自引:0,他引:9  
Mass spectrometry (MS) has become an indispensable tool for peptide and protein structure analysis because of three unique capabilities that enable it to be used to solve structural problems not easily handled by conventional techniques. First, MS is able to provide accurate molecular weight information on low-picomole amounts of peptides and proteins independent of covalent modifications that may be present. Second, this information is obtainable for peptides present in complex mixtures such as those that result from a proteolytic digest of a protein. Third, by using tandem MS, partial to complete sequence information may be obtained for peptides containing up to 25 amino acid residues, even if the peptides are present in mixtures. Sensitivity and speed of the MS-based approaches now equal (and in some cases exceed) that of Edman-based sequence analysis. In this perspective we discuss how MS, tandem high-performance MS, and on-line liquid chromatography/MS using fast atom bombardment or electrospray ionization have been integrated with more conventional techniques in order to increase the accuracy and speed of peptide and protein structure characterization. The expanding role of matrix-assisted laser desorption MS in protein analysis is also described. The unique niche that MS occupies for locating and structurally characterizing posttranslational modifications of proteins is emphasized. Examples chosen from the authors' laboratory illustrate how MS is used to sequence blocked proteins, define N- and C-terminal sequence heterogeneity, locate and correct errors in DNA- and cDNA-deduced protein sequences, identify sites of deamidation, isoaspartyl formation, phosphorylation, oxidation, disulfide bond formation, and glycosylation, and define the structural class of carbohydrate at specific attachment sites in glycoproteins.  相似文献   

8.
Proteins of a liver extract taken from a metabolically (13)C-labeled mouse were separated by 2D-PAGE and identified after tryptic digestion by MALDI-TOF MS peptide mass fingerprinting. (13)C-Labeling of proteins was achieved by an infusion of U-(13)C-glucose, which is metabolized to labeled nonessential amino acids. The labeling was analyzed using the relative isotopologue abundances of the measured isotope pattern of tryptic peptides and quantified by their increase in the average molecular mass (DeltaAVM). Fractional synthesis rates (FSR) of proteins were determined from corresponding peptides using measured DeltaAVM values as well as DeltaAVM values deduced from tRNA-precursor amino acid labeling, which in turn was derived from proteins showing high (13)C enrichments. The 8-h FSR values of 43 proteins were determined to range from 0 +/- 0.6 to 95 +/- 1%/8 h, with typical errors given as SEM values, which depend on the number of peptides of a specific protein usable for calculation. The method demonstrates that FSR values as an indicator for protein turnover in the liver proteome can be estimated within narrow error margins, providing baseline values from which treatment-dependent deviations could be detected with high statistical certainty.  相似文献   

9.
Significant identification of proteins by mass fingerprinting and partial sequencing of tryptic peptides is central to proteomics. However, peptide masses cluster with distances of approximately 1 Da. Expanding these clusters will give more peptides of unique masses, thereby identifying proteins with a higher significance. The mass clusters can be expanded downward by including more oxygen atoms in the peptides. Classic performic acid oxidation modifies three residues, Cys to CysO(3), Met to MetO(2), and Trp to TrpO(2). In this study, we compare the mass distributions of tryptic peptides computed from the predicted proteomes of Bacillus subtilis, Drosophila melanogaster, Arabidopsis thaliana, and Homo sapiens modified by oxidation, reduction, and reduction followed by carboxymethylation, carboxamidomethylation, or pyridylethylation. Forty to 46% of the eukaryotic tryptic peptides contain Cys, Met, or Trp. Additionally, the importance of mass accuracy of differentially modified tryptic peptides for significant protein identification by database searches was analyzed. The results show that performic acid oxidation gives markedly extended mass distributions at mass accuracies from +/-0.002 to +/-0.25 Da for the eukaryotes. The effect of the expanded mass distribution on significant protein identification was illustrated by searching simulated mass peak lists against the databases containing oxidized and reduced tryptic peptides. The specificity of formic acid oxidation was tested experimentally, and no general adverse effects were detected. Tryptic peptides provided a 100% sequence coverage of oxidized barley grain peroxidase by LC-MS, and the sequence coverages of oxidized and carboxymethylated bovine serum albumin were similar by MALDI-TOF MS analyses.  相似文献   

10.
Gu S  Pan S  Bradbury EM  Chen X 《Analytical chemistry》2002,74(22):5774-5785
Here, we describe a method for protein identification and de novo peptide sequencing. Through in vivo cell culturing, the deuterium-labeled lysine residue (Lys-d4) introduces a 4-Da mass tag at the carboxyl terminus of proteolytic peptides when cleaved by certain proteases. The 4-Da mass difference between the unlabeled and the deuterated lysine assigns a mass signature to all lysine-containing peptides in any pool of proteolytic peptides for protein identification directly through peptide mass mapping. Furthermore, it was used to distinguish between N- and C-terminal fragments for accurate assignments of daughter ions in tandem MS/MS spectra for sequence assignment. This technique simplifies the labeling scheme and the interpretation of the MS/MS spectra by assigning different series of fragment ions correctly and easily and is very useful in de novo peptide sequencing. We have also successfully implemented this approach to the analysis of protein mixtures derived from the human proteome.  相似文献   

11.
We investigated and compared three approaches for shotgun protein identification by combining MS and MS/MS information using LTQ-Orbitrap high mass accuracy data. In the first approach, we employed a unique mass identifier method where MS peaks matched to peptides predicted from proteins identified from an MS/MS database search are first subtracted before using the MS peaks as unique mass identifiers for protein identification. In the second method, we used an accurate mass and time tag method by building a potential mass and retention time database from previous MudPIT analyses. For the third method, we used a peptide mass fingerprinting-like approach in combination with a randomized database for protein identification. We show that we can improve protein identification sensitivity for low-abundance proteins by combining MS and MS/MS information. Furthermore, "one-hit wonders" from MS/MS database searching can be further substantiated by MS information and the approach improves the identification of low-abundance proteins. The advantages and disadvantages for the three approaches are then discussed.  相似文献   

12.
A new method for proteolytic stable isotope labeling is introduced to provide quantitative and concurrent comparisons between individual proteins from two entire proteome pools or their subfractions. Two 18O atoms are incorporated universally into the carboxyl termini of all tryptic peptides during the proteolytic cleavage of all proteins in the first pool. Proteins in the second pool are cleaved analogously with the carboxyl termini of the resulting peptides containing two 16O atoms (i.e., no labeling). The two peptide mixtures are pooled for fractionation and separation, and the masses and isotope ratios of each peptide pair (differing by 4 Da) are measured by high-resolution mass spectrometry. Short sequences and/or accurate mass measurements combined with proteomics software tools allow the peptides to be related to the precursor proteins from which they are derived. Relative signal intensities of paired peptides quantify the expression levels of their precursor proteins from proteome pools to be compared, using an equation described in the paper. Observation of individual (unpaired) peptides is mainly interpreted as differential modification or sequence variation for the protein from the respective proteome pool. The method is evaluated here in a comparison of virion proteins for two serotypes (Ad5 and Ad2) of adenovirus, taking advantage of information already available about protein sequences and concentrations. In general, proteolytic 18O labeling enables a shotgun approach for proteomic studies with quantitation capability and is proposed as a useful tool for comparative proteomic studies of very complex protein mixtures.  相似文献   

13.
We have developed a complete system for the isotopic labeling, fractionation, and automated quantification of differentially expressed peptides that significantly facilitates candidate biomarker discovery. We describe a new stable mass tagging reagent pair, (12)C(6)- and (13)C(6)-phenyl isocyanate (PIC), that offers significant advantages over currently available tags. Peptides are labeled predominantly at their amino termini and exhibit elution profiles that are independent of label isotope. Importantly, PIC-labeled peptides have unique neutral-mass losses upon CID fragmentation that enable charge state and label isotope identification and, thereby, decouple the sequence identification from the quantification of candidate biomarkers. To exploit these properties, we have coupled peptide fractionation protocols with a Thermo LTQ-XL LC-MS(2) data acquisition strategy and a suite of automated spectrum analysis software that identifies quantitative differences between labeled samples. This approach, dubbed the PICquant platform, is independent of protein sequence identification and excludes unlabeled peptides that otherwise confound biomarker discovery. Application of the PICquant platform to a set of complex clinical samples showed that the system allows rapid identification of peptides that are differentially expressed between control and patient groups.  相似文献   

14.
The analysis of mass spectrometry data is still largely based on identification of single MS/MS spectra and does not attempt to make use of the extra information available in multiple MS/MS spectra from partially or completely overlapping peptides. Analysis of MS/MS spectra from multiple overlapping peptides opens up the possibility of assembling MS/MS spectra into entire proteins, similarly to the assembly of overlapping DNA reads into entire genomes. In this paper, we present for the first time a way to detect, score, and interpret overlaps between uninterpreted MS/MS spectra in an attempt to sequence entire proteins rather than individual peptides. We show that this approach not only extends the length of reconstructed amino acid sequences but also dramatically improves the quality of de novo peptide sequencing, even for low mass accuracy MS/MS data.  相似文献   

15.
We report an online nonenzymatic method for site-specific digestion of proteins to yield peptides that are well suited for collision-induced dissociation tandem mass spectrometry. The method combines online microwave heating acid hydrolysis at aspartic acid and online electrochemical oxidation at tryptophan and tyrosine. The combined microwave/electrochemical digestion is reproducible and produces peptides with an average sequence length of 10 amino acids. This peptide length is similar to the average peptide length of 9 amino acids obtained by digestion of proteins with the enzyme trypsin. As a result, the peptides produced by this novel nonenzymatic digestion method, when analyzed by electrospray ionization mass spectrometry, produce protonated molecules with mostly +1 and +2 charge states. The combination of these two nonenzymatic methods overcomes shortcomings with each individual method in that (i) peptides generated by the microwave-hydrolysis method have an average amino acid length of 16 amino acids and (ii) the electrochemical-cleavage method is unable to reproducibly digest proteins with molecular masses above 4 kDa. Preliminary results are presented on the application and utility of this rapid online digestion (total of 6 min of digestion time) on a series of standard peptides and proteins as well as an Escherichia coli protein extract.  相似文献   

16.
Wang YK  Ma Z  Quinn DF  Fu EW 《Analytical chemistry》2001,73(15):3742-3750
Systematic analysis of proteins is essential in understanding human diseases and their clinical treatments. To achieve the rapid and unambiguous identification of marker or target proteins, a new procedure termed "inverse labeling" is proposed. With this procedure, to evaluate protein expression of a diseased or a drug-treated sample in comparison with a control sample, two converse labeling experiments are performed in parallel. The perturbed sample (by disease or by drug treatment) is labeled in one experiment, whereas the control is labeled in the second experiment. When mixed and analyzed with its unlabeled counterpart for differential comparison using mass spectrometry, a characteristic inverse labeling pattern of mass shift will be observed between the two parallel analyses for proteins that are differentially expressed. In this study, protein labeling is achieved through 18O incorporation into peptides by proteolysis performed in [18O]water. Once the peptides are identified with the characteristic inverse labeling pattern of 18O/16O ion intensity shift, MS data of peptide fingerprints or peptide sequence information can be used to search a protein database for protein identification. The methodology has been applied successfully to two model systems in this study. It permits quick focus on the signals of differentially expressed proteins. It eliminates the detection ambiguities caused by the dynamic range of detection on proteins of extreme changes in expression. It enables the detection of protein modifications responding to perturbation. This strategy can also be extended to other protein-labeling methods, such as chemical or metabolic labeling, to realize the same benefits.  相似文献   

17.
Botulinum neurotoxin (BoNT) is one of the most toxic substances known. BoNT is classified into seven distinct serotypes labeled A-G. Among individual serotypes, researchers have identified subtypes based on amino acid variability within a serotype and toxin variants with minor amino acid sequence differences within a subtype. BoNT subtype identification is valuable for tracing and tracking bacterial pathogens. A proteomics approach is useful for BoNT subtyping since botulism is caused by botulinum neurotoxin and does not require the presence of the bacteria or its DNA. Enzymatic digestion and peptide identification using tandem mass spectrometry determines toxin protein sequences. However, with the conventional one-step digestion method, producing sufficient numbers of detectable peptides to cover the entire protein sequence is difficult, and incomplete sequence coverage results in uncertainty in distinguishing BoNT subtypes and toxin variants because of high sequence similarity. We report here a method of multiple enzymes and sequential in-gel digestion (MESID) to characterize the BoNT protein sequence. Complementary peptide detection from toxin digestions has yielded near-complete sequence coverage for all seven BoNT serotypes. Application of the method to a BoNT-contaminated carrot juice sample resulted in the identification of 98.4% protein sequence which led to a confident determination of the toxin subtype.  相似文献   

18.
Although alpha-cyano-4-hydroxycinnamic acid functions as an excellent matrix for the analysis of most peptides using matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) mass spectrometry, the ionization of phosphorylated peptides is usually suppressed by nonphosphorylated peptides. As an alternative matrix, 2',4',6'-trihydroxyacetophenone (THAP) with diammonium citrate was found to overcome this problem for the MALDI TOF mass spectrometric analysis of proteolytic digests of phosphorylated proteins. Specifically, the abundances of phosphorylated peptides in tryptic digests of bovine beta-casein and protein kinase C (PKC)-treated mouse cardiac troponin I were enhanced more than 10-fold using THAP during positive ion MALDI TOF mass spectrometry. The protonated molecules of phosphorylated peptides were sufficiently abundant that postsource decay TOF mass spectrometry was used to confirm the number of phosphate groups in each peptide. Finally, tryptic digestion followed by analysis using MALDI TOF mass spectrometry with THAP as the matrix facilitated the identification of a unique phosphorylation site in PKC-treated troponin I.  相似文献   

19.
This study exploits the increase in chromatographic retention that accrues from benzoyl derivatization of primary amines as a tool to increase sequence coverage in tryptic peptide mapping. N-hydroxysuccinamide sulfonyl benzoate quantitatively derivatizes primary amines of peptides. Introduction of the hydrophobic benzoyl moiety into peptides increased retention of peptides during reversed-phase chromatography (RPC), particularly in the case of smaller hydrophilic peptides. Short chain (1-6 amino acids) tryptic fragments of model proteins lysozyme, myoglobin, and cytochrome c derivatized with N-hydroxysuccinamide sulfonyl benzoate eluted in the linear acetonitrile gradient. Application of benzoyl derivatization was further extended to achieve complete sequence coverage of a therapeutic protein, recombinant human growth hormone, and in detection of single amino acid polymorphism.  相似文献   

20.
The present study reports a procedure developed for the identification of SDS-polyacrylamide gel electrophoretically separated proteins using an electrospray ionization quadrupole time-of-flight mass spectrometer (Q-TOF MS) equipped with pressurized sample introduction. It is based on in-gel digestion of the proteins without previous reduction/alkylation and on the capability of the Q-TOF MS to provide data suitable for peptide mass fingerprinting database searches and for tandem mass spectrometry (MS/MS) database searches (sequence tags). Omitting the reduction/alkylation step reduces sample contamination and sample loss, resulting in increased sensitivity. Omitting this step can leave disulfide-connected peptides in the analyte that can lead to misleading or ambiguous results from the peptide mass fingerprinting database search. This uncertainty, however, is overcome by MS/MS analysis of the peptides. Furthermore, the two complementary MS approaches increase the accuracy of the assignment of the unknown protein. This procedure is thus, highly sensitive, accurate, and rapid. In combination with pressurized nanospray sample introduction, it is suitable for automated sample handling. Here, we apply this approach to identify protein contaminants observed during the purification of the yeast DNA mismatch repair protein Mlh 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号