首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
基于众多领域及生物神经网络本身所存在的脉冲瞬动现象,本文首次提出并研究了带时滞的脉冲型Hopfield神经网络的全局指定稳定性问题,并讨论了其平衡态的存在唯一性。  相似文献   

2.
离散Hopfield神经网络的稳定性分析   总被引:3,自引:0,他引:3  
雷社平  阮本清  解建仓 《计算机工程》2003,29(21):139-140,167
主要研究非对称离散Hopfield神经网络并行演化方式的动力学行为,同时给出了网络的一些新的稳定性条件,所获结果不仅推广了一些已有的结论,而且为该网络的应用提供了一定的理论基础。  相似文献   

3.
时滞连续Hopfield神经网络的全局指数稳定性   总被引:2,自引:0,他引:2  
本文采用非线性时滞微分不等式分析技巧,研究了时滞连续Hopfield神经网络的稳定性,给出在任意外界恒常输入下连续Hopfield网络的平衡态的收敛速度及全局指数稳定的若干充分判据.  相似文献   

4.
带有时滞的随机区间Hopfield神经网络的指数稳定性   总被引:2,自引:0,他引:2  
讨论了带有可变时滞的随机区间Hopfield神经网络的指数稳定性, 利用It^o公式和Lyapunov函数, 得到了几个关于其指数稳定时滞无关和时滞相关的充分性条件, 推广了现有文献中关于定常时滞随机神经网络及其确定形式的许多结果.  相似文献   

5.
T-S模型提供了一种通过模糊集和模糊推理将复杂的非线性系统表示为线性子模型的方法。研究了时滞Hopfield神经网络的随机稳定性(SFVDHNNs)。首先描述了SFVDHNNs模型,然后用Lyapunov方法研究了SFVDHNNs全局均方指数稳定性,通过可以被一些标准的数值分析方法求解的线性矩阵不等式(LMIs)得出了稳定性标准。  相似文献   

6.
脉冲时滞Hopfield神经网络的全局指数稳定性   总被引:1,自引:0,他引:1  
研究一类具有脉冲控制的时滞Hopfideld神经网络的全局指数稳定性,通过Lyapunov-Krasovskii稳定性理论和Halanay不等式等方法,构造合适的Lyapunov泛函,利用不等式技巧得到了确保时滞神经网络在脉冲控制下全局指数稳定的一个充分条件,保证了Hofidd神经网络在脉冲控制下的全局指数稳定,并估计了系统的指数收敛率.为了便于计算和验证结论的有效性,给出一个简化的充分条件.最后通过数值实例的实验仿真证实了结论的有效性、可行性.  相似文献   

7.
离散Hopfield神经网络的稳定性研究   总被引:19,自引:4,他引:19  
廖晓昕  昌莉  沈轶 《自动化学报》1999,25(6):721-727
推广了前人关于离散Hopfield神经网络的稳定性定理及周期为2极限环的存在定理,并从理论上给出了新的严格的证明.进一步,提出了关于部分变元稳定和部分变元为极限环的新概念,并给出了判别定理.最后给出了几个有趣的例子,揭示这类网络渐近行为的复杂性.  相似文献   

8.
脉冲Hopfield神经网络的鲁棒H-稳定性及其脉冲控制器设计   总被引:3,自引:1,他引:3  
研究了脉冲Hopfield神经网络在Hopfield意义下的鲁棒稳定性. 通过应用Lyapunov函数法和Riccati不等式方法, 得到了脉冲Hopfield神经网络鲁棒稳定和鲁棒渐近稳定的充分条件, 在此基础上, 设计出了易于实施的脉冲控制器来镇定Hopfield神经网络. 最后, 给出了例子.  相似文献   

9.
通过引入能量泛函,分析了一类具有时滞的广义Hopfield神经网络的全局稳定性.从理论上给出了该类网络为全局稳定的充分条件,证明了当时滞满足一个可计算的边界条件时,具有时滞的该类神经网络与相应的无时滞网络具有同样的全局稳定特性.仿真结果进一步证明了结论的有效性。  相似文献   

10.
具时滞脉冲细胞神经网络的全局指数稳定性   总被引:2,自引:0,他引:2  
研究了一类新的具有脉冲的时滞细胞神经网络系统模型,引入了一类新的脉冲条件,在不假设激励函数的有界性、单调性和光滑性的条件下,得到了系统平衡点的存在性、唯一性及全局指数稳定性的一些新的充分条件,并得到了指数收敛速率.  相似文献   

11.
主要利用网络的状态转移方程和定义能量函数的方法对非对称离散Hopfield神经网络在并行演化方式的动力学行为进行了研究。同时,给出了一些新的网络的收敛性条件。所获结果推广了一些已有的结论。  相似文献   

12.
Global Robust Exponential Stability of Interval Neural Networks with Delays   总被引:1,自引:0,他引:1  
In this Letter, based on globally Lipschitz continous activation functions, new conditions ensuring existence, uniqueness and global robust exponential stability of the equilibrium point of interval neural networks with delays are obtained. The delayed Hopfield network, Bidirectional associative memory network and Cellular neural network are special cases of the network model considered in this Letter. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
In this Letter, based on globally Lipschitz continous activation functions, new conditions ensuring existence, uniqueness and global robust exponential stability of the periodic solution of interval-delayed neural networks with periodic input are obtained. All the results obtained are generalizations of some resent results reported in the literature for neural networks with constant input.  相似文献   

14.
通过构造适当的Lyapunov函数,利用Halanay不等式和Young不等式,讨论一类具有变时滞的Hopfield型神经网络的全局指数稳定性.在对网络施加两个不同的神经元激励函数的条件下,导出网络全局指数稳定的一个充分条件,得到的充分条件在实际应用中易于验证,且有较小的保守性,因而对网络的应用和设计具有重要意义.最后,一个数值实例进一步验证结果的正确性.  相似文献   

15.
利用M矩阵理论,同构理论以及不等式技巧,研究了一类变时滞神经网络平衡点的存在性和惟一性问题。同时利用M矩阵理论,反证法以及不等式技巧,得到了变时滞神经网络系统惟一的平衡点的全局指数稳定性的充分条件。通过判断由神经网络的权系数、自反馈函数以及激励函数构造的矩阵是否为M矩阵,即可以检验该变时滞神经网络系统的全局指数稳定性。该判据易于用Matlab进行检验,最后给出一个仿真示例进一步证明了判据的有效性。  相似文献   

16.
在近十几年里,已提出了一类与双向联想记忆相联系的神经网络模型,这些模型推广了单层自联想Hebbian相关器为两层异联想模式匹配器,因而,这类网络在模式识别、信号与图像处理等领域中有广阔的应用前景.研究了带离散时滞杂交双向联想记忆神经网络的收敛特性,利用Halanay型不等式获得了网络全局指数稳定性的充分条件,所得结果是与时滞无关的;已证明利用Halanay型不等式获得的结果改进了由Lyapunov方法获得的结果,而且获得的结果容易判定,并且给出了一个数值例子以说明所得结论的正确性.  相似文献   

17.
The robust stability of a class of Hopfield neural networks with multiple delays and parameter perturbations is analyzed. The sufficient conditions for the global robust stability of equilibrium point are given by way of constructing a suitable Lyapunov functional. The conditions take the form of linear matrix inequality (LMI), so they are computable and verifiable efficiently. Furthermore, all the results are obtained without assuming the differentiability and monotonicity of activation functions. From the viewpoint of system analysis, our results provide sufficient conditions for the global robust stability in a manner that they specify the size of perturbation that Hopfield neural networks can endure when the structure of the network is given. On the other hand, from the viewpoint of system synthesis, our results can answer how to choose the parameters of neural networks to endure a given perturbation.  相似文献   

18.
By using the continuation theorem of Mawhins coincidence degree theory and constructing a suitable Lyapunov function, some new sufficient conditions are obtained ensuring existence and global asymptotical stability of periodic solution of cellular neural networks with periodic coefficients and delays, which do not require the activation functions to be differentiable and monotone nondecreasing. A numerical example is given to illustrate that the criteria are feasible. These results are helpful to design globally asymptotically stable and periodic oscillatory cellular neural networks.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号