首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
The daily concentration and chemical composition of PM2.5 was determined in indoor and outdoor 24‐h samples simultaneously collected for a total of 5 weeks during a winter and a summer period in an apartment sited in Rome, Italy. The use of a specifically developed very quiet sampler (<35 dB) allowed the execution of the study while the family living in the apartment led its normal life. The indoor concentration of PM2.5 showed a small seasonal variation, while outdoor values were much higher during the winter study. Outdoor sources were found to contribute significantly to indoor PM concentration especially during the summer, when the apartment was naturally ventilated by opening the windows. During the winter the infiltration of outdoor PM components was lower and mostly regulated by the particle dimensions. Organics displayed In/Out ratios higher than unity during both periods; their indoor production increased significantly during the weekends, where the family stayed mostly at home. PM components were grouped into macrosources (soil, sea, secondary inorganics, traffic, organics). During the summer the main contributions to outdoor PM2.5 came from soil (30%), secondary inorganics (29%) and organics (22%). Organics dominated both indoor PM2.5 during the summer (60%) and outdoor and indoor PM2.5 during the winter (51% and 66%, respectively).  相似文献   

2.
Ozone in indoor environments: concentration and chemistry   总被引:1,自引:0,他引:1  
Weschler CJ 《Indoor air》2000,10(4):269-288
The concentration of indoor ozone depends on a number of factors, including the outdoor ozone concentration, air exchange rates, indoor emission rates, surface removal rates, and reactions between ozone and other chemicals in the air. Outdoor ozone concentrations often display strong diurnal variations, and this adds a dynamic excitation to the transport and chemical mechanisms at play. Hence, indoor ozone concentrations can vary significantly from hour-to-hour, day-to-day, and season-to-season, as well as from room-to-room and structure-to-structure. Under normal conditions, the half-life of ozone indoors is between 7 and 10 min and is determined primarily by surface removal and air exchange. Although reactions between ozone and most other indoor pollutants are thermodynamically favorable, in the majority of cases they are quite slow. Rate constants for reactions of ozone with the more commonly identified indoor pollutants are summarized in this article. They show that only a small fraction of the reactions occur at a rate fast enough to compete with air exchange, assuming typical indoor ozone concentrations. In the case of organic compounds, the "fast" reactions involve compounds with unsaturated carbon-carbon bonds. Although such compounds typically comprise less than 10% of indoor pollutants, their reactions with ozone have the potential to be quite significant as sources of indoor free radicals and multifunctional (-C=O, -COOH, -OH) stable compounds that are often quite odorous. The stable compounds are present as both gas phase and condensed phase species, with the latter contributing to the overall concentration of indoor submicron particles. Indeed, ozone/alkene reactions provide a link between outdoor ozone, outdoor particles and indoor particles. Indoor ozone and the products derived from reactions initiated by indoor ozone are potentially damaging to both human health and materials; more detailed explication of these impacts is an area of active investigation.  相似文献   

3.
Outdoor particulate matter (PM(10)) is associated with detrimental health effects. However, individual PM(10) exposure occurs mostly indoors. We therefore compared the toxic effects of classroom, outdoor, and residential PM(10). Indoor and outdoor PM(10) was collected from six schools in Munich during teaching hours and in six homes. Particles were analyzed by scanning electron microscopy and X-ray spectroscopy (EDX). Toxicity was evaluated in human primary keratinocytes, lung epithelial cells and after metabolic activation by several human cytochromes P450. We found that PM(10) concentrations during teaching hours were 5.6-times higher than outdoors (117 ± 48 μg/m(3) vs. 21 ± 15 μg/m(3), P < 0.001). Compared to outdoors, indoor PM contained more silicate (36% of particle number), organic (29%, probably originating from human skin), and Ca-carbonate particles (12%, probably originating from paper). Outdoor PM contained more Ca-sulfate particles (38%). Indoor PM at 6 μg/cm(2) (10 μg/ml) caused toxicity in keratinocytes and in cells expressing CYP2B6 and CYP3A4. Toxicity by CYP2B6 was abolished with the reactive oxygen species scavenger N-acetylcysteine. We concluded that outdoor PM(10) and indoor PM(10) from homes were devoid of toxicity. Indoor PM(10) was elevated, chemically different and toxicologically more active than outdoor PM(10). Whether the effects translate into a significant health risk needs to be determined. Until then, we suggest better ventilation as a sensible option. PRACTICAL IMPLICATIONS: Indoor air PM(10) on an equal weight base is toxicologically more active than outdoor PM(10). In addition, indoor PM(10) concentrations are about six times higher than outdoor air. Thus, ventilation of classrooms with outdoor air will improve air quality and is likely to provide a health benefit. It is also easier than cleaning PM(10) from indoor air, which has proven to be tedious.  相似文献   

4.
Abstract Quasi‐ultrafine (quasi‐UF) particulate matter (PM0.25) and its components were measured in indoor and outdoor environments at four retirement communities in Los Angeles Basin, California, as part of the Cardiovascular Health and Air Pollution Study (CHAPS). The present paper focuses on the characterization of the sources, organic constituents and indoor and outdoor relationships of quasi‐UF PM. The average indoor/outdoor ratios of most of the measured polycyclic aromatic hydrocarbons (PAHs), hopanes, and steranes were close to or slightly lower than 1, and the corresponding indoor–outdoor correlation coefficients (R) were always positive and, for the most part, moderately strong (median R was 0.60 for PAHs and 0.74 for hopanes and steranes). This may reflect the possible impact of outdoor sources on indoor PAHs, hopanes, and steranes. Conversely, indoor n‐alkanes and n‐alkanoic acids were likely to be influenced by indoor sources. A chemical mass balance model was applied to both indoor and outdoor speciated chemical measurements of quasi‐UF PM. Among all apportioned sources of both indoor and outdoor particles, vehicular emissions was the one contributing the most to the PM0.25 mass concentration measured at all sites (24–47% on average).

Practical Implications

Although people (particularly the elderly retirees of our study) generally spend most of their time indoors, a major portion of the PM0.25 particles they are exposed to comes from outdoor mobile sources. This is important because, an earlier investigation, also conducted within the Cardiovascular Health and Air Pollution Study (CHAPS), showed that indoor‐infiltrated particles from mobile sources are more strongly correlated with adverse health effects observed in the elderly subjects living in the studied retirement communities compared with other particles found indoors ( Delfino et al., 2008 ).  相似文献   

5.
Ozone concentrations were measured in indoor and outdoor residential air during the summer of 1992. Six homes located in a New Jersey suburban area were chosen for analysis, and each home was monitored for 6 days under different ventilation and indoor combustion conditions. The 5-hour average ozone concentration outdoors over the monitoring period was 95 ± 36 ppbv. One third of the days exceeded the National Ambient Air Quality Standard (NAAQS), one-hour maximum concentration of 120 ppb. The mean indoor to outdoor (I/O) ratios of ozone concentration ranged from 0.22 ± 0.09 to 0.62 ± 0.11, depending upon ventilation rate and indoor gas combustion. The presence of indoor gas combustion can significantly decrease the I/O ratio. Because of the great amount of time that people spend indoors, the indoor residential exposures were estimated to account for 57% of the total residential exposures. One type of the possible gas-phase reactions for indoor ozone, the reaction of ozone with a volatile organic compound containing unsaturated carbon-carbon bonds, is discussed with some supporting evidence provided in the study.  相似文献   

6.
Cao JJ  Lee SC  Chow JC  Cheng Y  Ho KF  Fung K  Liu SX  Watson JG 《Indoor air》2005,15(3):197-204
Six residences were selected (two roadside, two urban, and two rural) to evaluate the indoor-outdoor characteristics of PM(2.5) (aerodynamic diameter <2.5 microm) carbonaceous species in Hong Kong during March and April 2004. Twenty-minute-averaged indoor and outdoor PM(2.5) concentrations were recorded by DustTrak samplers simultaneously at each site for 3 days to examine diurnal variability of PM(2.5) mass concentrations and their indoor-to-outdoor (I/O) ratios. Daily (24-h average) indoor/outdoor PM(2.5) samples were collected on pre-fired quartz-fiber filters with battery-powered portable mini-volume samplers and analyzed for organic and elemental carbon (OC, EC) by thermal/optical reflectance (TOR) following the Interagency Monitoring of Protected Visual Environments (IMPROVE) protocol. The average indoor and outdoor concentrations of 24 h PM(2.5) were 56.7 and 43.8 microg/m(3), respectively. The short-term PM(2.5) profiles indicated that the penetration of outdoor particles was an important contributor to indoor PM(2.5), and a household survey indicated that daily activities were also sources of episodic peaks in indoor PM(2.5). The average indoor OC and EC concentrations of 17.1 and 2.8 microg/m(3), respectively, accounted for an average of 29.5 and 5.2%, respectively, of indoor PM(2.5) mass. The average indoor OC/EC ratios were 5.8, 9.1, and 5.0 in roadside, urban, and rural areas, respectively; while average outdoor OC/EC ratios were 4.0, 4.3, and 4.0, respectively. The average I/O ratios of 24 h PM(2.5), OC, and EC were 1.4, 1.8, and 1.2, respectively. High indoor-outdoor correlations (r(2)) were found for PM(2.5) EC (0.96) and mass (0.81), and low correlations were found for OC (0.55), indicative of different organic carbon sources indoors. A simple model implied that about two-thirds of carbonaceous particles in indoor air are originated from outdoor sources. PRACTICAL IMPLICATIONS: Indoor particulate pollution has received more attentions in Asia. This study presents a case study regarding the fine particulate matter and its carbonaceous compositions at six residential homes in Hong Kong. The characteristics and relationship of atmospheric organic and elemental carbon were discussed indoors and outdoors. The distribution of eight carbon fractions was first reported in indoor samples to interpret potential sources of indoor carbonaceous particles. The data set can provide significant scientific basis for indoor air quality and epidemiology study in Hong Kong and China.  相似文献   

7.
This study evaluated the interrelations between indoor and outdoor bioaerosols in a bedroom under a living condition. Two wideband integrated bioaerosol sensors were utilized to measure indoor and outdoor particulate matter (PM) and fluorescent biological airborne particles (FBAPs), which were within a size range of 0.5-20 μm. Throughout this one-month case study, the median proportion of FBAPs in PM by number was 19% (5%; the interquartile range, hereafter) and 17% (3%) for indoors and outdoors, respectively, and those by mass were 78% (12%) and 55% (9%). According to the size-resolved data, FBAPs dominated above 2 and 3.5 μm indoors and outdoors, respectively. Comparing indoor upon outdoor ratios among occupancy and window conditions, the indoor FBAPs larger than 3.16 μm were dominated by indoor sources, while non-FBAPs were mainly from outdoors. The occupant dominated the indoor source of both FBAPs and non-FBAPs. Under awake and asleep, count- and mass-based mean emission rates were 45.9 and 18.7 × 106 #/h and 5.02 and 2.83 mg/h, respectively. Based on indoor activities and local outdoor air quality in Singapore, this study recommended opening the window when awake and closing it during sleep to lower indoor bioaerosol exposure.  相似文献   

8.
The intensity, frequency, duration, and contribution of distinct PM2.5 sources in Asian households have seldom been assessed; these are evaluated in this work with concurrent personal, indoor, and outdoor PM2.5 and PM1 monitoring using novel low-cost sensing (LCS) devices, AS-LUNG. GRIMM-comparable observations were acquired by the corrected AS-LUNG readings, with R2 up to 0.998. Twenty-six non-smoking healthy adults were recruited in Taiwan in 2018 for 7-day personal, home indoor, and home outdoor PM monitoring. The results showed 5-min PM2.5 and PM1 exposures of 11.2 ± 10.9 and 10.5 ± 9.8 µg/m3, respectively. Cooking occurred most frequently; cooking with and without solid fuel contributed to high PM2.5 increments of 76.5 and 183.8 µg/m3 (1 min), respectively. Incense burning had the highest mean PM2.5 indoor/outdoor (1.44 ± 1.44) ratios at home and on average the highest 5-min PM2.5 increments (15.0 µg/m3) to indoor levels, among all single sources. Certain events accounted for 14.0%-39.6% of subjects’ daily exposures. With the high resolution of AS-LUNG data and detailed time-activity diaries, the impacts of sources and ventilations were assessed in detail.  相似文献   

9.
This study presents for the first time comprehensive measurements of the particle number size distribution (10 nm to 10 μm) together with next-generation sequencing analysis of airborne bacteria inside a dental clinic. A substantial enrichment of the indoor environment with new particles in all size classes was identified by both activities to background and indoor/outdoor (I/O) ratios. Grinding and drilling were the principal dental activities to produce new particles in the air, closely followed by polishing. Illumina MiSeq sequencing of 16S rRNA of bioaerosol collected indoors revealed the presence of 86 bacterial genera, 26 of them previously characterized as potential human pathogens. Bacterial species richness and concentration determined both by qPCR, and culture-dependent analysis were significantly higher in the treatment room. Bacterial load of the treatment room impacted in the nearby waiting room where no dental procedures took place. I/O ratio of bacterial concentration in the treatment room followed the fluctuation of I/O ratio of airborne particles in the biology-relevant size classes of 1–2.5, 2.5–5, and 5–10 μm. Exposure analysis revealed increased inhaled number of particles and microorganisms during dental procedures. These findings provide a detailed insight on airborne particles of both biotic and abiotic origin in a dental clinic.  相似文献   

10.
The aim of the present work is to study the occupants' exposure to fine particulate concentrations in ten nightclubs (NCs) in Athens, Greece. Measurements of PM1 and PM2.5 were made in the outdoor and indoor environment of each NC. The average indoor PM1 and PM2.5 concentrations were found to be 181.77 μg m 3 and 454.08 μg m 3 respectively, while the corresponding outdoor values were 11.04 μg m 3 and 32.19 μg m 3. Ventilation and resuspension rates were estimated through consecutive numerical experiments with an indoor air quality model and were found to be remarkably lower than the minimum values recommended by national standards. The relative effects of the ventilation and smoking on the occupants' exposures were examined using multiple regression techniques. It was found that given the low ventilation rates, the effect of smoking as well as the occupancy is of the highest importance. Numerical evaluations showed that if the ventilation rates were at the minimum values set by national standards, then the indoor exposures would be reduced at the 70% of the present exposure values.  相似文献   

11.
Japanese cedar pollinosis (JCP) caused by allergenic cedar and cypress pollens is one of major economic and health issues in Japan. The present study reported here aimed to provide basic data to understand the status of early life exposures to airborne cedar and cypress pollens in school settings. In particular, the study investigated relationships between indoor and outdoor concentrations of airborne cedar and cypress pollens and total suspended particulates (TSP) in a kindergarten in Japan. Overall, outdoor concentrations of the airborne pollens and TSP were higher than the indoor concentrations, i.e., indoor to outdoor (I/O) ratios of 0.043–0.055 and 0.545 for the airborne pollens and TSP, respectively. The smaller I/O ratios for the pollens were expected because the larger pollen grains (20–30 μm in diameter) were less likely penetrated to indoor environment than for smaller airborne particulates. The present study also found increased TSP concentrations during the pollen season was likely attributed to increased airborne pollen concentrations. By understanding the status of indoor and outdoor concentrations of airborne cedar and cypress pollens in school settings, early life exposures to these allergenic pollens should be effectively minimized to prevent subsequent progression to JCP symptoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号