首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 8 毫秒
1.
The hydrodynamics and mass transfer characteristics of a lab-scale jet bubbling reactor(JBR) including the gas holdup, volumetric mass transfer coefficient and specific interfacial area were assessed experimentally investigating the influence of temperature, p H and superficial gas velocity. The reactor diameter and height were 11 and 30 cm,respectively. It was equipped with a single sparger, operating at atmospheric pressure, 20 and 40℃, and two p H values of 3 and 6. The height of the liquid was 23 cm, while the superficial gas velocity changed within 0.010–0.040 m·s~(-1) range. Experiments were conducted with pure oxygen as the gas phase and saturated lime solution as the liquid phase. The liquid-side volumetric mass transfer coefficient was determined under unsteady-state oxygen absorption in a saturated lime solution. The gas holdup was calculated based on the liquid height change, while the specific interfacial area was obtained by a physical method based on the bubble size distribution(BSD) in different superficial gas velocities. The results indicated that at the same temperature but different p H, the gas holdup variation was negligible, while the liquid-side volumetric mass transfer coefficient at the p H value of 6 was higher than that at the p H = 3. At a constant p H but different temperatures, the gas holdup and the liquid-side volumetric mass transfer coefficients at 40℃ were higher than that of the same at 20℃. A reasonable and appropriate estimation of the liquid-side volumetric mass transfer coefficient(kla) in a pilot-scale JBR was provided which can be applied to the design and scale-up of JBRs.  相似文献   

2.
Bubble induced liquid circulation is important in applications such as bubble columns and air-lift reactors. In this work, we describe an experimental and numerical investigation of liquid circulation induced by a bubble plume in a tank partitioned by a baffle. The baffle divides the tank into two compartments. Liquid can flow from one compartment to the other through openings at the top and the bottom of the baffle. Gas (air) was injected in the riser section in the form of bubbles at one corner of the tank. The temporal and spatial variation of velocity field in the liquid as a function of the gas flow rate was measured using particle image velocimetry (PIV). At a constant gas flow rate, the liquid flow field is unsteady due to the interaction with the bubbles. The time scales associated with the velocity-time series and the bubble plume thickness variation were calculated. The time averaged-velocity field was used to quantify the variation of the liquid circulation rate with gas flow rate. The turbulence in the liquid was measured in terms of turbulent intensities. These were calculated from the experimental data and were observed to be less than 3 cm/s. A 2-d Euler-Euler two-fluid model with buoyancy and drag as the interaction terms was used to simulate the flow. The parameters chosen for the simulations were selected from literature. It is shown that inclusion of turbulence model such as k-ε is necessary to capture the overall flow behavior. Good agreement was observed between experimentally obtained velocity profiles and the recirculation rates with the simulation results.  相似文献   

3.
结合云南红磷化工有限公司磷铵厂单管反应器生产DAP的特点,从管式反应器、干燥过程、洗涤过程3个方面分析为降低氨耗所采取的措施,并结合该公司10万t/aDAP装置运行情况,提出降低氨耗应注意的问题。  相似文献   

4.
Hyun Kyu Suh 《Fuel》2008,87(6):925-932
This paper investigates the effect of injection parameters on the characteristics of dimethyl ether (DME) as an alternative fuel in a diesel engine with experimental and analytical models based on empirical equations. In order to study macroscopic and microscopic characteristics of DME fuel, this work focuses on the atomization characteristics of DME and compares experimental and predicted results for spray development obtained by empirical models for diesel and DME fuel. Detailed comparisons of spray tip penetration from three different empirical correlations and from visualization experiments of diesel and DME fuels were conducted under various fuel injection conditions. In comparison with the results of different empirical equations for measured spray tip penetration, the experimental results of this study provide good agreement with the calculation results based on empirical equations, except during the earliest stage of the injected spray sequence. The results of atomization characteristics indicate that DME showed better spray characteristics than conventional diesel fuel. Also, the fuel injection delay and maximum injection rate of DME fuel are shorter and lower than those of diesel fuel at the same injection conditions, respectively.  相似文献   

5.
Plastic degradation for recovery of useful products or raw materials is a very interesting alternative for reducing the plastic accumulation. This paper explores the possibility of using refinery facilities to carry out the plastic cracking as well as to take the most of the products obtained. In the present work, LDPE/VGO blends with different percentages of polymer are degraded in presence of a FCC equilibrium catalyst. The reactor used in this study is a laboratory scale sand fluidized bed reactor at 500 °C, and a 7:1 catalyst:LDPE/VGO blend ratio in order to simulate the operating conditions in a large scale industrial reactor. Polyethylene blends evaluated show relative proportions of LDPE of 0, 6, 25, 75 and 100% (w/w). Gas and liquid compounds were collected and quantified. The results obtained are compared with those generated in a thermal cracking.

In all cases, the FCC equilibrium catalyst showed a high selectivity to the production of isobutane and isopentane in the volatile compounds as well as to aromatics in the liquid products.

Results shown in this paper evidences the viability of introducing plastics into FCC unit, producing potential valuable products from low value materials.  相似文献   


6.
A study of the selective oxidative coupling of methane (OCM) to C2 hydrocarbons (ethane and ethylene) in a solid-state electrochemical reactor made from yttria-stabilized zirconia (YSZ) has been made. Three different catalyst–electrode systems based on silver and two trimetallic formulations of Mn modified alkali (Na and K) tungstates supported on silica were used. A comparison is made between co-fed and electrochemically-supplied oxygen. The electrochemically-supplied oxygen gave higher overall C2 selectivities than the co-fed method under low current conditions, which was attributed to differences in local methane to oxygen ratios at the catalyst surface. The potassium tungstate supported catalyst gave the best overall C2 selectivity (86% at 4% C2 yield).  相似文献   

7.
The need for diversification of energy sources and reducing various emissions including CO2 emission in diesel engine can be met with alternative diesel fuels such as gas to liquid (GTL) and GTL–biodiesel blends. But there should be a clear understanding of the combustion and engine-out emission characteristics for alternative fuels. In this respect, an experimental study was conducted on a 2.0 L 4 cylinders turbocharged diesel engine fuelled with those alternative diesel fuels to investigate the engine-out emission characteristics under various steady-state engine operating conditions. The results revealed that noticeable decreases in THC (22–56%) and CO (16–52%) emissions for GTL–biodiesel blends were observed, whereas NOx emissions for GTL–biodiesel blends increased by a maximum of 12% compared to diesel. With regard to particle size distributions (PSDs) for GTL–biodiesel blends, the particulate matter (PM) number concentration in accumulation mode decreased, as a result of the excess oxygen content in biodiesel. Contrary to the tendency in the accumulation mode, there was a slight increase in the PM number concentration in the nucleation mode under the operating conditions wherein the exhaust gas recirculation (EGR) strategy was applied. The total PM number concentration for G + BD40 decreased by a maximum of 46% compared to that for diesel. From these results of enhanced emission characteristics compared to diesel and GTL fuel, the potential for the use of GTL–biodiesel blends could be confirmed.  相似文献   

8.
The goal of this work was to develop new geometry design of inlet and outlet distributors of the FM01-LC in parallel plate configuration using Computational Fluid Dynamics (CFD). The new distributor geometry was experimentally evaluated with RTD experimental curves using the stimulus-response technique and approximated with axial dispersion model (ADM), plug dispersion exchange model (PDEM) and by solving the hydrodynamic (Reynolds average Navier–Stokes equation for low Reynolds number, RANS-LRN) and mass transport (convection–diffusion equation in transient and turbulent regimen) equations using computational fluid dynamics (F-tracer RTD method). Two sets of RTD experiments (common and new inlet and outlet distributors) in FM01-LC reactors with channel thickness of 0.011 m were carried out. The volumetric flows (Q) employed were from 0.5 to 3.5 L min−1 (U0 = 0.02-0.15 m s−1). The new FM01-LC reactor had a more homogeneous velocity field in the entire reaction zone, as shown by axial dispersion values lower than those obtained with the common FM01-LC, at different Reynolds numbers. The RTD curves obtained with Comsol Multiphysics 4.3a are in agreement with RTD experimental curves, but deviations are observed at Reynolds numbers greater than “5991”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号