首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The instantaneous uncut chip thickness and entry/exit angle of tool/workpiece engagement vary with tool path, workpiece geometry and cutting parameters in peripheral milling of complex curved surface, leading to the strong time-varying characteristic for instantaneous cutting forces. A new method for cutting force prediction in peripheral milling of complex curved surface is proposed in this paper. Considering the tool path, cutter runout, tool type(constant/nonconstant pitch cutter) and tool actual motion, a representation model of instantaneous uncut chip thickness and entry/exit angle of tool/ workpiece engagement is established firstly, which can reach better accuracy than the traditional models. Then, an approach for identifying of cutter runout parameters and calibrating of specific cutting force coefficients is presented. Finally, peripheral milling experiments are carried out with two types of tool, and the results indicate that the predicted cutting forces are highly consistent with the experimental values in the aspect of variation tendency and amplitude.  相似文献   

2.
A theoretical cutting force model for helical end milling with cutter runout is developed using a predictive machining theory, which predicts cutting forces from the input data of workpiece material properties, tool geometry and cutting conditions. In the model, a helical end milling cutter is discretized into a number of slices along the cutter axis to account for the helix angle effect. The cutting action for a tooth segment in the first slice is modelled as oblique cutting with end cutting edge effect and tool nose radius effect, whereas the cutting actions of other slices are modelled as oblique cutting without end cutting edge effect and tool nose radius effect. The influence of cutter runout on chip load is considered based on the true tooth trajectories. The total cutting force is the sum of the forces at all the cutting slices of the cutter. The model is verified with experimental milling tests.  相似文献   

3.
Cutter runout due to cutter axis offset is quite common in a milling process, yet it is difficult to directly measure the runout geometry of a ball end cutter during the cutting process. This paper presents an analytical method for the estimation of cutter radial offset via forces in ball end milling. Closed form expression for the total milling force in the presence of cutter offset is first obtained. Fourier series coefficients for the offset related force component are shown to be expressed explicitly in terms of the offset geometry and serve as the basis for the identification of the offset geometry from the measured cutting forces. The offset geometry including its magnitude and the phase angle are directly calculated from the measured force component at the spindle frequency through two algebraic expressions. The identification method is finally validated by milling experiments.  相似文献   

4.
Classical ways of computing cutting force coefficients cannot be used by the cutters with non-uniform helix and pitch angles. So, this paper presents a novel separate-edge-forecast method to compute cutting force coefficients for any kind of flank-end cutter, especially for cutters with non-uniform helix and pitch angles. Using this method, the cutter runout can be combined into the cutting force coefficients without computing the cutter runout parameters. Simultaneously, the method predicts the cutting force coefficients for every cutter edge. Firstly, a series of three-axis machining experiments, which must satisfy the specific condition that only one cutter edge is removing materials at any time, is conducted. Then, the cutting force-curves are divided into N force lobes. Each lobe is assigned to the corresponding cutter edge using an algorithm. Subsequently, the cutter edge and the corresponding cutting force lobe are used to determine the cutting force coefficients. This means N cutter edges have N groups of cutting force coefficients, correspondingly. Finally, in order to verify the validity and correctness of the proposed method, a cutter with non-uniform helix and pitch angle is utilized to predict cutting force coefficients based on which the cutting forces are also computed. The results demonstrate that the cutting forces predicted agree well with the data measured. Simultaneously, it can be observed that the method can predict the coefficients considering the cutter runout effect.  相似文献   

5.
Cutting force coefficients are the key factors for efficient and accurate prediction of instantaneous milling force. To calibrate the coefficients, this paper presents an instantaneous milling force model including runout and cutter deformation. Also, forming of surface error is analyzed, and a surface error model considering runout is proposed. Using surface errors of two experiments completed with the same cutting conditions but different axial depth only, cutter deformation is obtained. Then, a new approach for the determination of instantaneous cutting force coefficients is provided. The method can eliminate influences of the other factors except cutter deformation and runout. A series of experiments are designed, and the results are used to identify the parameters. With the evaluated coefficients and runout parameters, the instantaneous milling force and surface error are predicted. A good agreement between predicted results and experimental results is achieved, which shows that the method is efficient, and effect of runout on surface error is not negligible.  相似文献   

6.
Cutter runout is a common phenomenon affecting the cutting performances in milling operations. To date, most of the milling process models considering cutter runout were established based on the circular tooth path approximation, which brought errors into the runout estimation. In this paper, a new approach is presented for modelling the milling process geometry with cutter runout based on the true tooth trajectory of cutter in milling. The mathematical relationship between the trajectories generated by successive cutter teeth with runout is analysed. The milling process geometrical parameters, including the instantaneous undeformed chip thickness, the entry and exit angles of a cutting tooth, and the ideal peripheral machined workpiece surface roughness, are modelled according to the true tooth trajectories. Numerical method is used to solve the derived transcendental equations. A simulation study of the effects of cutter runout on milling process geometry is conducted using the models. It was found that the change of cutter radius for a tooth relative to its preceding one is the most important factor in evaluating the effects of cutter runout.  相似文献   

7.
Cutting forces prediction in generalized pocket machining   总被引:1,自引:1,他引:0  
Cutting force prediction is important for the planning and optimization of machining process. This paper presents an approach to predict the cutting forces for the whole finishing process of generalized pocket machining. The equivalent feedrate is introduced to quantify the actual speed of cutting cross-section in prediction of cutting force for curved surface milling. For convenience, to analyze the process with varying feed direction and cutter engagement, the milling process for generalized pocket is discretized into a series of small processes. Each of the small processes is transformed into a steady-state machining, using a new approximation method. The cutting geometries of each discrete process, i.e., feed direction, equivalent feedrate per tooth, entry angle, and exit angle are calculated based on the information refined from NC code. An improved cutting force model which involves the effect of feed direction on cutting forces prediction is also presented. A machining example of a freeform pocket is performed, and the measured cutting forces are compared with the predictions. The results show that the proposed approach can effectively predict the variation of cutting forces in generalized pocket machining.  相似文献   

8.
数控铣削过程中,切削变形引起的瞬时切削厚度是影响铣削加工切削力建模的重要参数之一,针对环形铣刀的切削特点,在考虑刀具跳动的情况下,对真实刀刃轨迹运动进行分析。将微细铣削的加工过程用宏观铣削来表示,从而建立了基于宏观铣削过程中刀具跳动下精密加工的瞬时切削厚度。通过仿真模拟和切削力试验来预测切削力,预测结果和试验结果具有一致性,表明该模型可以更好的预测加工过程中的切削力。  相似文献   

9.
切削力预测是制定与优化加工工艺的重要环节。针对曲线端铣加工过程,提出一种基于斜角切削的切削力建模方法。将刀具沿轴向微分,以曲线微分几何计算微元刃上的工作基面。在微元刃的工作法平面参考系中,应用最小能量原理,构建微元刃中力矢量、速度矢量、流屑角、法向摩擦角、法向剪切角及剪应力等切削参数之间的约束。以单齿直线铣削试验对切削参数进行标定,其中法向摩擦角、法向剪切角及剪应力等可表示为瞬时未变形切屑厚度的函数。选取高强度钢PCrNi3MoVA试件,分别进行圆弧和Bézier曲线端铣加工试验。试验结果表明,曲线端铣时切削力的变化与瞬时进给方向和曲线曲率相关。切削力预测值的幅值大小和变化趋势与试验值一致,验证了该切削力建模方法的有效性。  相似文献   

10.
This paper proposes a new approach to predicting cutting forces in milling operations. The approach attempts to find the analytic relationship between cutting forces and the tangential direction of the tool path when a tool moves along an analytical curve, i.e., a Pythagorean-hodograph curve that describes a group of analytic curves with special properties, in a milling operation. In conventional methods for the prediction of cutting forces in milling operations, cutting forces are estimated by considering such cutting parameters as feed rate, depth of cut, and tool geometry. However, the change in the moving direction of the cutter, which has a major effect on cutting forces, is often neglected by previous researchers. This work aims to establish the theoretical basis to show how cutting forces along a curve can be predicted. Two case studies are used to illustrate the proposed cutting force prediction strategy.  相似文献   

11.
Based on the machining tool path and the true trajectory equation of the cutting edge relative to the workpiece, the engagement region between the cutter and workpiece is analyzed and a new model is developed for the numerical simulation of the machined surface topography in a multiaxis ball-end milling process. The influence of machining parameters such as the feed per tooth, the radial depth of cut, the angle orientation tool, the cutter runout, and the tool deflection upon the topography are taken into account in the model. Based on the cutter workpiece engagement, the cutting force model is established. The tool deflections are extracted and used in the surface topography model for simulation. The predicted force profiles were compared to the measured ones. A reasonable agreement between the experimental and the predicted results was found.  相似文献   

12.
A simulation system was developed that deals with cut geometry and machining forces when a toroidal cutter is used during semifinishing in five-axis milling. The cut geometry was calculated using an analytical method called analytical boundary simulation (ABS). ABS was implemented to calculate the cut geometry when the machining used an inclination angle and a screw angle. The effect of tool orientation on the cut geometry was analyzed. The accuracy of the proposed method was verified by comparing the cut lengths calculated using ABS with cuts obtained experimentally. The result indicated that the method was accurate. ABS was subsequently applied to support a cutting force prediction model. A validation test showed that there was a good agreement with the cutting force generated experimentally.  相似文献   

13.
平头立铣刀铣削力模型中积分限的确定方法   总被引:1,自引:0,他引:1  
在铣削力预报的研究中 ,通常采用的方法是将铣刀沿其轴线方向逐层划分为很薄的微单元 ,对每一个微单元可认为是一个单刃刀具的斜角切削过程 ,通过建立微单元上的切削力模型并沿轴线方向积分来求得总的切削力 ,轴向积分限通常是通过角度换算获取 ,比较繁琐。本文对刀具的几何特征进行了描述 ,建立了求取平头立铣刀铣削力模型角度积分限的通用方法 ,该方法通过分析刀具几何特征和加工类型 ,直接获取角度积分限 ,避免了繁琐的轴向积分限的计算 ,并通过算例验证了该方法的有效性。  相似文献   

14.
针对不同走刀路径下的复杂曲面加工过程进行球头铣刀铣削Cr12MoV加工复杂曲面研究,分析不同走刀路径下铣削力和刀具磨损的变化趋势。试验结果表明:通过对比分析直线铣削和曲面铣削过程中的最大未变形切屑厚度,可以得出单周期内曲面铣削的力大于直线铣削过程的力,铣削相同铣削层时环形走刀测得的切削力普遍大于往复走刀测得的切削力;以最小刀具磨损为优化目标,运用方差分析法分析得出不同走刀路径的影响刀具磨损的主次因素,同时利用残差分析方法建立球头铣刀加工复杂曲面刀具磨损预测模型,并通过试验进行验证。  相似文献   

15.
In free-form surface machining, the prediction of five-axis ball-end milling forces is quite a challenge due to difficulties of determining the underformed chip thickness and engaged cutting edge. Part and tool deflections under high cutting forces may result in poor part quality. To solve these concerns, this paper presents process modeling and optimization method for five-axis milling based on tool motion analysis. The method selected for geometric stock modeling is the dexel approach, and the extracted cutter workpiece engagements are used as input to a force prediction. The cutter entry?Cexit angles and depth of cuts are found and used to calculate the instantaneous cutting forces. The process is optimized by varying the feed as the tool?Cworkpiece engagements vary along the toolpath, and the unified model provides a powerful tool for analyzing five-axis milling. The new feedrate profiles are shown to considerably reduce the machining time while avoiding process faults.  相似文献   

16.
针对变截面涡旋盘瞬时铣削力预测存在的多元非线性难题,从涡旋盘实际铣削过程出发,建立了考虑刀具跳动的瞬时铣削力数学模型,提出了一种基于改进粒子群优化算法(PSO)对铣削力模型参数进行求解的方法,以提高瞬时铣削力预测模型精度。通过4组不同铣削参数下的瞬时铣削力实验对该方法进行验证,结果表明:该方法求解得到的变截面涡旋盘瞬时铣削力与实验测得的瞬时铣削力在形状和峰值处有较高的吻合度,4组实验的峰值误差在15%以内;采用自适应惯性权重和随机扰动因子的改进PSO算法能够有效地提高变截面涡旋盘瞬时铣削力系数辨识的收敛速度和收敛效果,还能提高算法整体搜索能力。该方法只需较少的实验次数就能辨识出较高精度的模型参数,比平均铣削力求解方法的实验成本更低,对涡旋盘的加工具有重要参考价值。  相似文献   

17.
A new dynamic force model for a ball-end milling cutter is presented in this paper. Based on the principle of the power remaining constant in cuts, the Merchant oblique cutting theory has been successfully used for the differential cutting edge segment of a ball-end milling cutter. A concise method for characterising the relationship of the complex geometry of a ball-end milling cutter and the milling process variables is determined, so that the force coefficients can be decomposed. The geometric property of a ball-end milling cutter and the dynamics of the milling process are integrated into the general model to eliminate the need for the experimental calibration of each cutter geometry and milling process variable. The milling experiments prove that this model can predict accurately the cutting forces in three Cartesian directions.  相似文献   

18.
Cutting force prediction for ball nose milling of inclined surface   总被引:2,自引:2,他引:0  
Ball nose milling of complex surfaces is common in the die/mould and aerospace industries. A significant influential factor in complex surface machining by ball nose milling for part accuracy and tool life is the cutting force. There has been little research on cutting force model for ball nose milling on inclined planes. Using such a model ,and by considering the inclination of the tangential plane at the point of contact of the ball nose model, it is possible to predict the cutting force at the particular cutting contact point of the ball nose cutter on a sculptured surface. Hence, this paper presents a cutting force model for ball nose milling on inclined planes for given cutting conditions assuming a fresh or sharp cutter. The development of the cutting force model involves the determination of two associated coefficients: cutting and edge coefficients for a given tool and workpiece combination. A method is proposed for the determination of the coefficients using the inclined plane milling data. The geometry for chip thickness is considered based on inclined surface machining with overlapping of previous pass. The average and maximum cutting forces are considered. These two forces have been observed to be more dominating force-based parameters or features with high correlation with tool wear. The developed cutting force model is verified for various cutting conditions.  相似文献   

19.
Abstract

The force prediction is the precondition of improving equipment utilization ratio and optimizing process for CNC machining. Cutter-workpiece engagement (CWE) and in-cut cutting edge (ICCE) are the keys. In this article, a new analytic method of CWE and ICCE is proposed for ball end milling of sculptured surface and the prediction model of milling force is established. The sculptured surface is discretized into a series of infinitesimal inclined planes corresponding to cutter location points. The geometry relationships of cutter axis, feed direction and inclined plane are defined parametrically. The boundary curves and the boundary inflection points of the CWE are obtained by intersecting spatial standard curved surfaces with rotation transformation of coordinate system. The effective intersection points of the CWE and the cutter edge curve in Xc-Yctwo-dimensional plane are the upper and lower boundary points of ICCE. Based on the instantaneous chip thickness considering arbitrary feed direction, the force prediction model for ball end mill of three-axis surface milling is established. Simulation and experiment show that CWE and ICCE calculated by analytic method are well consistent with those of solid method. The predicted cutting forces match well with the measurements both in magnitude and variation trend.  相似文献   

20.
Development of an automatic arc welding system using SMAW process   总被引:1,自引:0,他引:1  
In end milling of pockets, variable radial depth of cut is generally encountered as the end mill enters and exits the corner, which has a significant influence on the cutting forces and further affects the contour accuracy of the milled pockets. This paper proposes an approach for predicting the cutting forces in end milling of pockets. A mathematical model is presented to describe the geometric relationship between an end mill and the corner profile. The milling process of corners is discretized into a series of steady-state cutting processes, each with different radial depth of cut determined by the instantaneous position of the end mill relative to the workpiece. For the cutting force prediction, an analytical model of cutting forces for the steady-state machining conditions is introduced for each segmented process with given radial depth of cut. The predicted cutting forces can be calculated in terms of tool/workpiece geometry, cutting parameters and workpiece material properties, as well as the relative position of the tool to workpiece. Experiments of pocket milling are conducted for the verification of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号