首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catalytic properties of Cr2O3 supported on MgF2 or Al2O3 have been modified by magnesium oxide. The catalysts have been obtained by the co-impregnation method and characterised by: BET, XRD and TPR. As follows from the results, the oxides supported on magnesium fluorine react with each other already at 400 °C, leading to formation of an amorphous spinel-like phase. On the Al2O3 support such an MgCr2O4 spinel has appeared at much higher temperatures. The addition of magnesium oxide has a significant effect on the activity and selectivity of the catalysts studied in the CO oxidation reaction at room temperature and in the reaction of cyclohexane dehydrogenation. The magnesium–chromium catalysts supported on MgF2 have been found to show much higher activity and selectivity than the analogous systems supported on Al2O3.  相似文献   

2.
A series of Co–Cu composite oxides with different Co/Cu atomic ratios were prepared by a co-precipitation method. XRD, N2 sorption, TEM, XPS, H2-TPR, CO-TPR, CO-TPD and O2-TPD were used to characterize the structure and redox properties of the composite oxides. Only spinel structure of Co3O4 phase was confirmed for the Co–Cu composite oxides with Co/Cu ratios of 4/1 and 2/1, but the particle sizes of these composite oxides decreased evidently compared with Co3O4. These composite oxides could be reduced at lower temperatures than Co3O4 by either H2 or CO. CO and O2 adsorption amounts over the composite oxides were significantly higher than those over Co3O4. These results indicated a strong interaction between cobalt and copper species in the composite samples, possibly suggesting the formation of Cu x Co3?x O4 solid solution. For the preferential oxidation of CO in a H2-rich stream, the Co–Cu composite oxides (Co/Cu = 4/1–1/1) showed distinctly higher catalytic activities than both Co3O4 and CuO, and the formation of Cu x Co3?x O4 solid solution was proposed to contribute to the high catalytic activity of the composite catalysts. The Co–Cu composite oxide was found to exhibit higher catalytic activity than several other Co3O4-based binary oxides including Co–Ce, Co–Ni, Co–Fe and Co–Zn oxides.  相似文献   

3.
《Applied catalysis》1989,46(1):69-87
Samarium, magnesium and manganese oxide and alkali-promoted oxide catalysts have been prepared and tested for the oxidative coupling of methane. The results show that alkali-promoted oxides inhibit total oxidation and have a higher selectivity for the formation of C2 products than the undoped metal oxides. These catalysts have been promoted by injecting pulses of gaseous chlorinated compounds (dichloromethane and chloroform) during the reaction. It has been found that these chlorinated compounds markedly increase the selectivity for the formation of C2 products for all the MnO2-based catalysts and for lithium-doped MgO and Sm2O3 catalysts. The effect is greatest in MnO2-based catalysts. When dichloromethane is added to a pure, unpromoted MnO2 catalyst the selectivity for the formation of carbon dioxide decreases from 82.6% to 4.1% and the selectivity for the formation of C2H4 increases from virtually zero to 56.3%. The highest C2 selectivity observed after promotion of pure MnO2 by dichloromethane is about 93%. Promotion of these pure oxide catalysts by gaseous chlorinated compounds provides an alternative to alkali promotion as a method of inhibiting total oxidation and of increasing ethylene production.  相似文献   

4.
Zirconia-supported and bulk-mixed vanadiumantimonium oxide catalysts were used for the oxidation of o-xylene to phthalic anhydride. X-ray diffraction, Raman spectroscopy and photoelectron spectroscopy were used for characterization. It was found that vanadium promotes the transition of tetragonal to monoclinic zirconia. The simultaneous presence of Sb and V on zirconia at low coverage led to a preferential interaction of individual V and Sb oxides with the zirconia surface rather than the formation of a binary Sb-V oxide, while at higher Sb-V contents the formation of SbVO4 took place. Sb-V/ZrO2 catalysts showed high activity for o-xylene conversion and better selectivity to phthalic anhydride as compared to V/ZrO2 catalysts. However, their selectivity to phthalic anhydride was poor in comparison to a V/TiO2 commercial catalyst. The improved selectivity of the Sb-containing catalysts is attributed to the blocking of non-effective surface sites of ZrO2, the decrease of the total amount of acid sites and the formation of surface V-O-Sb-O-V structures.  相似文献   

5.
Perovskite oxide LaCoO3 and the mixture oxides of La2O3 + Co3O4 were prepared by sol–gel method. Then Au/La–Co–O catalysts were prepared by deposition- precipitation (DP) method and characterized by means of XRD, BET, XPS, TEM and IR. The catalytic performance for CO low-temperature oxidation and stability over these catalysts were compared. The results of experiment showed gold catalysts supported on perovskite oxides have higher catalytic activity and stability than that of supported on the simple oxides.  相似文献   

6.
Results of the characterization of six Co-based Fischer–Tropsch (FT) catalysts, with 15% Co loading and supported on SiO2 and Al2O3, are presented. Room temperature X-ray diffraction (XRD), temperature and magnetic field (H) variation of the magnetization (M), and low-temperature (5 K) electron magnetic resonance (EMR) are used for determining the electronic states (Co0, CoO, Co3O4, Co2+) of cobalt. Performance of these catalysts for FT synthesis is tested at reaction temperature of 240 °C and pressure of 20 bars. Under these conditions, 15% Co/SiO2 catalysts yield higher CO and syngas conversions with higher methane selectivity than 15% Co/Al2O3 catalysts. Conversely the Al2O3 supported catalysts gave much higher selectivity towards olefins than Co/SiO2. These results yield the correlation that the presence of Co3O4 yield higher methane selectivity whereas the presence of Co2+ species yields lower methane selectivity but higher olefin selectivity. The activities and selectivities are found to be stable for 55 h on-stream.  相似文献   

7.
Co3O4 and Mn3O4 nanoparticles were successfully impregnated on SBA-15 mesoporous silica. A high dispersion of these metal oxide particles was achieved while using a “two-solvents” procedure, allowing a proper control of the metal oxides loading (7 wt%) and size (10–12 nm). These Co3O4 and Mn3O4 supported oxides on SBA-15 were characterised by means of XRD, BET and TEM techniques. The influence of the nature of the silica support was investigated in terms of porosity and specific surface area. Since, an improved catalytic activity was achieved over SBA-15 mesoporous silica; it appears that its organised porous meso-structure creates a confinement medium which permits a high dispersion of metal oxide nanoparticles. Supported Co3O4/SBA-15 (7 wt%) showed the highest catalytic performance in the combustion of methane under lower explosive limit conditions, comparable to perovskites. These materials become therefore novel efficient combustion catalysts at low metal loading.  相似文献   

8.
The hydrogenation of carbon oxides (CO and CO2) on bimetallic Cu/Co and Ni/Co as well as Co/ZnO catalysts obtained by reduction of the corresponding spinel cobaltites MexCo3-xO4 is investigated. The predominant hydrogenation process is methanation and in the case of nickel cobaltite high and stable activity and selectivity are reached, no carbon deposition and carbide formation being observed.  相似文献   

9.
The influence of the promoter (Pd) modifying additives of oxides of rare-earth (La2O3, CeO2) and transition (NiO, CuO) metal oxides on the catalytic activity of Co3O4/cordierite in reactions of O2 and NO reduction by hydrogen was studied. Introducing Pd and rare-earth metal oxides into the composition of cobalt oxide catalyst results in an increase in its activity in H2 + 1/2O2 → H2O, H2 + NO → 1/2N2 + H2O reactions and an increase in selectivity upon oxygen reduction by hydrogen in the presence of nitric oxide, due possibly to a decrease in the strength of oxygen bounds with the surface and the formation of low-temperature forms of oxygen, which is not typical of unpromoted cobalt oxide catalyst. A structured Pd-Co3O4-La2O3/cordierite catalyst was developed that surpasses the commercial granulated silver-manganese catalyst used in industry to purify the technological gases used in the production of hydroxylamine sulfate of oxygen impurities with reference to activity and selectivity (in the process of oxygen reduction in the presence of nitric oxide), and to thermal stability.  相似文献   

10.
The catalytic oxidalive coupling of metnane to ethylene and ethane with manganese oxide catalysts promoted with alkali metal and alkali metallic-chloride has been studied at atmospheric pressure in a fixed bed flow reactor. The main studies of reaction were carried out over maganese oxide catalysts promoted with sodium chloride and the structure and surface morphology of these catalysts was characterized by an X-ray diffraction and a scanning electron microscope. The powdered MnO2 was changed into Mn2O3, and MnO2 containing alkali metallic-chlorides was not changed to new ternary oxides but changed into Mn3O4 and/or Mn2O3 at higher calcination temperature(above 780°C). The optimum content of NaCl promoted was 10–20wt%, an in over 10wt%, the conversion and the selectivity were kept constant. The main factor on deactivation of catalysts was the loss of thepromoter(NaCl). The addition of alkali metal salts to manganese oxide catalyst has enhanced C2(C2H4 + C2H6) selectivity due to neutralizing acid sites more than the electronic factor. It was confirmed that chlorine in alkali metallicchloride has enhanced the formation of C2H4, resulting in a good C2-yield (up to 25.7%).  相似文献   

11.
A comparative study of the catalytic performance and long-term stability of various metal oxide supported gold catalysts during preferential CO oxidation at 80°C in a H2-containing atmosphere (PROX) reveals significant support effects. Compared to Au/-Al2O3, where the support is believed to behave neutrally in the reaction process, catalysts supported on reducible transition metal oxides, such as Fe2O3, CeO2, or TiO2, exhibit a CO oxidation activity of up to one magnitude higher at comparable gold particle sizes. The selectivity is also found to strongly depend on the employed metal oxide, amounting, e.g., up to 75% for Au/Co3O4 and down to 35% over Au/SnO2. The deactivation, which is observed for all samples with increasing time on stream, except for Au/-Al2O3, is related to the build-up of surface carbonate species. The long-term stability of the investigated catalysts in simulated methanol reformate depends crucially on the ability to form such by-products, with magnesia and Co3O4 supported catalysts being most negatively affected. Overall, Au/CeO2 and, in particular, Au/-Fe2O3 represent the best compromise under the applied reaction conditions, especially due to the superior activity and the easily reversible deactivation of the latter catalyst.  相似文献   

12.
In this research, the dechlorination of 2-chloro-2-butene in C5 oil from the fluid catalytic cracking (FCC) process was performed through a catalytic reaction. Metal oxides were used as active materials and ZSM-5 was used as the supporting material for the catalysts; the metal was cobalt, iron, or manganese. After the preparation of three types of metal-oxide/ZSM-5 catalysts through the ion-exchange method, the activities and characteristics of each catalyst were evaluated. Through screening tests, the Co3O4/ZSM-5 catalyst was selected as the dechlorination catalyst, and the performance of catalysts containing different amounts of Co3O4 relative to ZSM-5 were tested.  相似文献   

13.
Novel catalysts for the hydroxylation of phenol, Fe–Si–O, Fe–Mg–O and Fe–Mg–Si–O complex oxides, have been synthesized by a coprecipitation method. X‐ray diffraction studies show that MgFe2O4 crystallites with spinel structure are formed in Fe–Mg–Si–O and Fe–Mg–O complex oxides and the crystallite size of the metal oxide or complex oxide is reduced after addition of Si. In the hydroxylation of phenol with hydrogen peroxide, Fe‐based complex oxides exhibit high activities after a short induction period. The phenol conversion is improved when silicon is introduced into the Fe‐based complex oxides, and formation of MgFe2O4 crystals with spinel structure in the catalysts increases the diphenol selectivity. The addition of a little acetic acid to the reaction liquid can shorten the induction period effectively. Under the same reaction conditions, phenol conversion and diphenol selectivity over the Fe–Mg–Si–O catalyst are close to those over TS‐1, and furthermore, the reaction time is more than ten times shorter as compared to TS‐1. The reaction mechanism of the hydroxylation of phenol on the catalysts has been studied, and a free‐radical mechanism initiated by the formation of phenoxy free radicals is suggested. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
The catalytic performance of Ce2Zr1.5Co0.5O8−δ and Ce2Zr1.5Co0.47Rh0.07O8−δ mixed oxides was evaluated comparing the influence of Rh insertion for hydrogen production in ethanol steam reforming. Rh doped and not doped catalysts were prepared by the pseudo sol–gel like method and were characterized using DRX, TPR, SEM, and TPO. For the Rh-doped catalyst, it was found an easier structure reducibility allowing to avoid a reducing activation treatment. The reactivity results show that lifetime of Ce2Zr1.5Co0.47Rh0.07O8−δ mixed oxide is more than 30 times higher, compared to the Ce2Zr1.5Co0.5O8−δ mixed oxide. Catalytic tests under various water/ethanol ratios and ethylene and acetaldehyde steam reforming evidence that the deactivation process for the catalytic systems is not only related to carbon deposits but also to carbonate species, which can be form from an acetaldehyde reaction sequence. The benefic effect of rhodium would ascribe to its ability to avoid carbonates formation under reaction, preventing the blocking of the active oxygen vacancies of the mixed oxide support.  相似文献   

15.
Benzyl and trans-cinnamyl alcohols are heterogeneously oxidised to the corresponding aldehydes by O2 in liquid phase at 100 °C and ambient pressure using hydrous binary PdII–M oxides (M=CoIII, FeIII, MnIII and CuII) as catalysts. Modification of PdII oxide with transition metal cations greatly improves the catalytic activity and selectivity to aldehydes, CoIII and FeIII being the most effective promoters. In benzyl alcohol oxidation in toluene solution, the Pd–Co system gives 85–100% selectivity to aldehydes at 53–95% alcohol conversion in 15–60 min reaction time. The catalyst can be re-used without loss of its activity and selectivity. The presence of a certain amount of water in the catalysts is essential for their performance. From TGA, the composition of the optimal Pd–Co catalyst can be approximated as PdO·(0.13–1.0)CoO(OH)·(2–3)H2O. The oxidation of alcohols on Pd–M oxide catalysts is accompanied by transfer hydrogenation and decarbonylation side reactions, which is similar to the oxidation on the palladium metal. This indicates that the oxidation of alcohols on Pd–M oxide catalysts occurs via a dehydrogenation mechanism, with hydrogen being present on the catalyst surface.  相似文献   

16.
Cobalt-based catalysts are promising alternatives to replace Pt- and Cr-based catalysts for propane dehydrogenation (PDH). However, the sintering and reduction of unstable Co sites cause fast deactivation. Herein, the ultrasmall cobalt oxide clusters encapsulated within silicalite-1 zeolites (CoO@S-1) has been obtained via a ligand assistance in situ crystallization method. This CoO@S-1 catalyst exhibits an attractive propylene formation rate of 13.66 mmolC3H6·gcat−1·h−1 with selectivity of >92% and is durable during 120-h PDH reaction with five successive regeneration cycles. The high PDH activity of CoO@S-1 is assigned to the encapsulated CoO clusters are favorable for propane adsorption and can better stabilize the detached H* species from propane, leading to the lower dehydrogenation barriers than framework Co2+ cations and Co3O4 nanoparticles. Additionally, the π-binding propylene on CoO clusters can prevent the over-dehydrogenation reaction compared with the di-σ binding propylene on metallic Co, leading to the superior propylene selectivity and catalytic stability.  相似文献   

17.
Catalysts based on metals (Pt, Pd) and metal oxides (NiO, Co3O4, MoO3, WO3), supported on the surface of borate-containing aluminum oxide (B2O3–Al2O3), in the hydrocracking of sunflower oil at a temperature of 400°C, a pressure 4.0 MPa and a mass hourly space velocity MHSV 5.0 h–1 are compared. H2 TPR and IR spectroscopy of adsorbed CO and ESDR show that the hydrogenation catalyst components are Pt0 and Pd0, a mixture of Ni2+ + Ni0, Co2+ + Co0, or a mixture of the highest and partially reduced oxides of Mo and W. It is established that catalysts containing Pt, Pd, NiO and Co3O4, ensure complete oil hydrodeoxygenation. The main oxygen removal reactions in Ptand Pd-systems are decarboxylation and hydrodecarbonylation. For catalysts with NiO and Co3O4, characteristic reactions are reduction and methanation. The highest yield of the diesel fraction was obtained on Pt/B2O3-Al2O3 catalysts with metal contents of 0.3–1.0 wt %. Along with n-alkanes, the diesel fractions obtained on these catalysts include cycloalkanes and iso-alkanes (up to around 40 wt %) and aromatic hydrocarbons present in trace amounts. Hydrocracking on the Pt system at 400°C for 20 h with MHSV of 1.0 h–1 produces a diesel fraction with a yield of at least 82.0 wt % and the content of iso-alkanes at least 76.1 wt %.  相似文献   

18.
The catalytic oxidative dehydrogenation of ethane was investigated in a fixed-bed tubular microreactor at 500, 550 and 600 °C and a space velocity of 35 027ml g-1h-1. Two kinds of V-Mg oxides catalysts containing various V/Mg atomic ratios were employed. One group of catalysts was prepared by the solid reaction between fine powders of vanadium pentoxide and magnesium nitrate and the other ones were obtained from mesostructured V-Mg-Os. For the former catalysts, it was found that the selectivity to ethene increased and the conversion of ethane passed through a maximum with increasing V/Mg atomic ratio. For the catalysts obtained from the mesoporous materials, an optimum V/Mg atomic ratio was found, for which the conversion of ethane and the selectivity to ethene were maxima. Compared with the mixed-oxide catalysts, those obtained from the mesoporous materials exhibited much higher yields to ethene. Several new phases, such as pyro-Mg2V2O7, ortho-Mg3(VO4)2 and meta-MgV2O6, formed between magnesia and vanadia, were identified by XRD in the mixed V-Mg oxide catalysts; they may be responsible for the catalytic activity. In the catalysts prepared from mesoporous V-Mg-O, a V2O3 phase, which may contain highly dispersed magnesium, was identified and suggested to be responsible for the higher catalytic performance.  相似文献   

19.
This paper describes the role of Sb and Nb, components of Sn/V/Nb/Sb mixed oxides catalysts for the gas-phase ammoxidation of propane to acrylonitrile. In samples without Nb and with atomic ratios Sn/V/Sb 1/0.2/x (x = 0 to 3), Sb in the form of amorphous oxide is necessary in order to obtain an active and selective catalyst. However, during reaction the dispersed Sb oxide segregates to α-Sb2O4, and the yield to acrylonitrile decreases considerably. The addition of Nb gives rise to the formation of Nb-containing SbOx and non-stoichiometric rutile-type V/Nb/Sb mixed oxides. The presence of these compounds enhances the catalytic activity and the selectivity to acrylonitrile. Moreover, the catalyst shows a stable catalytic performance, with no segregation of α-Sb2O4.  相似文献   

20.
Titanium-silicon (Ti/Si) binary oxides having different Ti content were prepared by the sol-gel method and utilized as photocatalysts for the hydrogenation and hydrogenolysis of CH2CCH with H2O. The photocatalytic reactivity and selectivity of these catalysts were investigated as a function of the Ti content and it was found that the hydrogenolysis reaction (C2H6 formation) was predominant in regions of low Ti content, while the hydrogenation reaction (C3H6 formation) proceeded in regions of high Ti content. The in situ photoluminescence, diffuse reflectance absorption, FT-IR, XAFS (XANES and EXAFS), and XPS spectroscopic investigations of these Ti/Si binary oxides indicated that the titanium oxide species are highly dispersed in the SiO2 matrices and exist in a tetrahedral coordination exhibiting a characteristic photoluminescence spectrum. The charge transfer excited state of the tetrahedrally coordinated titanium oxide species plays a significant role in the efficient photoreaction with a high selectivity for the hydrogenolysis of CH3CCH to produces mainly C2H6 and CH4, while the catalysts involving the aggregated octahedrally coordinated titanium oxide species show a high selectivity for the hydrogenation of CH3CCH to produce C3H6, being similar to reactions of the powdered TiO2 catalysts. The good parallel relationship between the yield of the photoluminescence and the specific photocatalytic reactivity of the Ti/Si binary oxides as a function of the Ti content clearly indicates that the high photocatalytic reactivity of the Ti/Si binary oxides having low Ti content is associated with the high reactivity of the charge transfer excited state of the isolated titanium oxide species in tetrahedral coordination, [Ti3+-O]*.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号