首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以Al(NO3)3?9H2O为包覆原料,通过燃烧法制备得到LiNi0.03Co0.05Mn1.92O4@Al2O3正极材料。通过X射线衍射(XRD),场发射扫描电子显微镜(FESEM)和透射电镜(TEM)等表征手段对材料的结构和形貌进行分析,并通过恒电流充放电、循环伏安(CV)、交流阻抗(EIS)等测试分析材料的电化学性能。结果表明,Al2O3包覆没有改变LiNi0.03Co0.05Mn1.92O4的尖晶石型结构,包覆层厚度约10.6nm。LiNi0.03Co0.05Mn1.92O4@Al2O3正极材料电化学性能得到了明显改善,1 C和10 C倍率下初始放电比容量分别为119.9 mAh?g-1和106.3 mAh?g-1,充放电循环500次后容量保持率分别为88.4%和78.2%,而未包覆的LiNi0.03Co0.05Mn1.92O4在1 C和10 C倍率下初始放电比容量分别为121.2 mAh?g-1和104.0 mAh?g-1,500次循环后容量保持率分别为84.1%和67.6%。LiNi0.03Co0.05Mn1.92O4@Al2O3活化能为32.92 kJ?mol-1,而未包覆材料的活化能为36.24 kJ?mol-1,包覆有效降低了材料Li+扩散所需克服的能垒,提高了材料的电化学性能。  相似文献   

2.
LiNi1/3Co1/3Mn1/3O2 was coated with uniform nano-sized AlF3 layer by chemical precipitation method to improve its rate capability. The samples were characterized by X-ray diffractometry (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), charge-discharge cycling, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Uniform coated layer with a thickness of about 3 nm was observed on the surface of LiNi1/3Co1/3Mn1/3O2 particle by TEM. At 0.5C and 2C rates, 1.5% (mass fraction) AlF3-coated LiNi1/3Co1/3Mn1/3O2/Li in 2.8-4.3 V versus Li/Li+ after 80 cycles showed less than 3% of capacity fading, while those of the bare one were 16.5% and 45.9%, respectively. At 5C rate, the capacity retention of the coated sample after 50 cycles maintained 91.4% of the initial discharge capacity, while that of the bare one decreased to 52.6%. EIS result showed that a little change of charge transfer resistance of the coated sample resulting from uniform thin AlF3 layer was proposed as the main reason why its rate capability was improved obviously. CV result further indicated a greater reversibility for the electrode processes and better electrochemical performance of AlF3-coated layer.  相似文献   

3.
采用溶胶-凝胶法制备了锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2,并考察了烧结温度对材料结构、表面形貌和电化学性能的影响.XRD和SEM测试结果表明,900℃下烧结得到的样品是粒径在0.3~0.5 μm范围的球形粒子,具有最佳的阳离子有序度;充放电测试结果表明,其在0.1C倍率下首次放电容量达到148.8...  相似文献   

4.
LiNi1/3Co1/3Mn1/3O2 was synthesized by sol-gel method and effect of calcination temperature on characteristics of LiNi1/3Co1/3Mn1/3O2 cathode was investigated. The structure and characteristics of LiNi1/3Co1/3Mn1/3O2 were determined by XRD, SEM and electrochemical measurements. The results show that the compound LiNi1/3Co1/3Mn1/3O2 has layered structure with hexagonal lattice. With the increase of calcination temperature, the basicity of the material decreases, and the size of primary particle rises. The LiNi1/3Co1/3Mn1/3O2 calcined at 900 ℃ for 12 h shows excellent electrochemical performances with large reversible specific capacity of 157.5 mA-h/g in the voltage range of 2.75-4.30 V and good capacity retention of 94.03% after 20 charge/discharge cycles. Capacity of LiNi1/3Co1/3Mn1/3O2 increases with enhancement of charge voltage limit, and specific discharge capacities of 179.4 mA.h/g, 203.1 mA.h/g are observed when the charge voltages limit are fixed at 4.50 V and 4.70 V, respectively.  相似文献   

5.
采用共沉淀法制备Ni0.8Co0.1Mn0.1(OH)2前驱体,与LiOH.H2O混合后在氧气气氛中焙烧得到LiNi0.8Co0.1Mn0.1O2正极材料,探讨共沉淀反应过程中快速加料和慢速加料制度对前驱体形貌和LiNi0.8Co0.1Mn0.1O2正极材料性能的影响。通过X射线衍射(XRD)、扫描电镜(SEM)和电化学测试对样品进行表征。结果表明:慢速加料法减小了材料的粒径,合成了平均粒径在0.5μm左右的球形Ni0.8Co0.1Mn0.1(OH)2前驱体,且粒径分布比较集中;所合成LiNi0.8Co0.1-Mn0.1O2正极材料具有良好的层状结构,且无杂相存在;缓慢加料法得到的样品的电化学性能有很大提高,在0.1 C、0.5 C和1 C下首次放电比容量分别达到223.5、194.3和190.7 mA.h/g,循环30次后,容量保持率为80.09%、80.80%和85.84%。  相似文献   

6.
锂离子电池正极材料LiNi_1/3Co_1/3Mn_1/3O_2的研究进展   总被引:1,自引:0,他引:1  
介绍了一种新型的锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2的最新研究状况,描述了材料的晶体及电子结构,以及电化学性能;重点总结了现今国内外制备此材料的几种主要合成方法及研究进展;同时,介绍了不同掺杂元素(Fe、B、Al、Ti)对材料的改性作用。  相似文献   

7.
1 INTRODUCTIONDue to the high cost of LiCoO2,a commonlyused cathode material in commercial rechargeablelithium-ion batteries , much efforts have been madeto develop cheaper cathode materials than LiCoO2,Li Ni O2and Li MnO2have been studied extensivelyas possible alternatives to LiCoO2[1 4 ]. Stoichio-metric Li Ni O2is knownto be difficult to synthesizeandits multi-phase reaction during electrochemicalcyclingleads to structural degradation,andlayeredLi MnO2has a significant drawback…  相似文献   

8.
以[Ni1/3Co1/3Mn1/3]3O4和氢氧化锂为原料,分别采用球磨法和液相法前处理工艺制备层状正极材料Li[Ni1/3Mn1/3Co1/3]O2。采用X?射线衍射(XRD)、场发射扫描电镜(FESEM)、恒流充放电等手段对材料的物理和电化学性能进行表征。结果表明:采用不同前处理工艺制备出的Li[Ni1/3Mn1/3Co1/3]O2材料在结构、形貌和电化学性能上有较大差异;与球磨处理法制备的材料相比,采用液相法前处理工艺制备的Li[Ni1/3Mn1/3Co1/3]O2不但保持了前驱体较好的球形形貌,同时还具有较好的循环稳定性和倍率性能;该样品在20mA/g电流密度下,首次放电容量为178mA·h/g,50次循环后,容量保持率达98.7%;在1000mA/g电流密度下,样品容量为135mA·h/g。  相似文献   

9.
以Mn3O4为前驱体制备尖晶石型LiMn2O4及其性能   总被引:1,自引:0,他引:1  
采用改进的固相反应法合成了高性能的锂离子电池正极材料LiMn2O4。首先,以廉价的MnSO4为原料,通过水解氧化法制备纳米级Mn3O4前驱体;然后,将Mn3O4和Li2CO3混合均匀,在750℃固相反应20 h,得到尖晶石型LiMn2O4。用X射线衍射(XRD)和扫描电镜(SEM)对Mn3O4前驱体和LiMn2O4样品进行表征,用充放电测试和循环伏安技术对LiMn2O4样品进行电化学性能研究。结果表明:所制备的LiMn2O4具有完整的尖晶石型结构,且晶体粒子分布均匀。所制备的LiMn2O4材料在3.0~4.4 V之间,室温(25℃)下,在0.2C倍率下首次放电比容量为130.6 mA.h/g;在0.5C倍率下首次放电比容量为127.1 mA.h/g,30次循环后,容量仍有109.5 mA.h/g,且样品具有较好的高温性能。  相似文献   

10.
Samples of LiNi0.95-xCoxAl0.05O2 (x = 0.10 and 0.15) and LiNiO2, synthesized by the solid-state reaction at 725℃ for 24 h from LiOH-H2O, Ni2O3, Co2O3, and AI(OH)3 under an oxygen stream, were characterized by TG-DTA, XRD, SEM, and electrochemical tests. Simultaneous doping of cobalt and aluminum at the Ni-site in LiNiO2 was tried to improve the cathode performance for lithium-ion batteries. The results showed that co-doping (especially, 5 at.% A1 and 10 at.% Co) definitely had a large beneficial effect in increasing the capacity (186.2 mA.h/g of the first discharge capacity for LiNio.s.42OoaoAlo.0502) and cycling behavior (180.1 mA-h/g after 10 cycles for LiNio.85CooaoAlo.osO2) compared with 180.7 mA.h/g of the first discharge capacity and 157.7 mA.h/g of the tenth discharge capacity for LiNiO2, respectively. Differen- tial capacity versus voltage curves showed that the co-doped LiNio.95_xCoxmlo.osO2 had less intensity of the phase transitions than the pristine LiNiO2.  相似文献   

11.
将不同含量的Co3O4(2%,4%,6%,8%,质量分数)作为添加剂加入到储氢合金中,采用机械混合法进行改性处理。对添加Co3O4的合金电极的电化学性能和电极过程进行研究。结果表明:放电容量有了较大增加,添加2%、4%、6%、8%Co3O4的电极放电容量比空白电极容量分别增加0.83%,4.86%,7.18%和9.21%。线性极化曲线和电化学阻抗谱测试表明,添加Co3O4降低了电极的电荷转移电阻。循环伏安、扫描电镜和EDS测试表明,添加的Co3O4可部分溶解,发生Co-Co(OH)2可逆氧化?还原反应,从而改善储氢合金的电化学性能。  相似文献   

12.
The uniform layered LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)C2O4 as precursor synthesized via oxalate co-precipitation method in air. The effects of calcination temperature and time on the structure and electrochemical properties of the LiNi1/3Co1/3Mn1/3O2 were systemically studied. XRD results revealed that the optimal calcination conditions to prepare the layered LiNi1/3Co1/3Mn1/3O2 were 950°C for 15 h. Electrochemical measurement showed that the sample prepared under the such conditions has the highest initial discharge capacity of 160.8 mAh/g and the smallest irreversible capacity loss of 13.5% as well as stable cycling performance at a constant current density of 30 mA/g between 2.5 and 4.3 V versus Li at room temperature.  相似文献   

13.
Layered cathode material LiCo1/3Ni1/3Mn1/3O2 was synthesized by Pechini process, and investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and galvanostatic charge/discharge cycling. The sample is well-crystallized and has a phase-pure a-NaFeO2 structure. The particle sizes are uniform, and distributed in the range of 20-200 nm. The initial discharge capacity of the Li/LiCo1/3Ni1/3Mn1/3O2 cell was about 149 mAh·g -1 when it was cycled at a voltage range of 4.5-2.3 V with a specific current of 0.25 mA. The result is better in comparison with solid-state solution method. The synthetic procedure was discussed. Three major reactions: chelation, esterification, and polymerization successively occurred.  相似文献   

14.
1INTRODUCTIONAdvanced rechargeable lithium ion batteriesare attractive for use in consumer electronic andelectric vehicle(EV)application because of a fa-vorable combination of voltage,energy density,cycling performance,and have been developed rap-idly worldwide during the past decade[1,2].LiCoO2has been widely used as a cathode material in com-mercial lithiumion battery because it is reasonableeasy to synthesize and shows a stable discharge ca-pacity[3].But due to its high cost and toxic…  相似文献   

15.
通过草酸共沉淀法成功合成了5 V正极材料LiNi0.5Mn1.5O4,采用XRD、SEM、充放电试验和循环伏安法对合成产物进行表征。XRD和SEM分析结果表明,所合成的正极材料LiNi0.5Mn1.5O4具有立方尖晶石结构(空间群为Fdˉ3 m),结晶度高,粒度适中且比较均匀。电化学测试结果表明,合成产物具有优良的电化学性能,它仅在4.7 V附近有一个放电平台,0.1 C的放电容量高达133 mAh/g,50次循环后放电容量仍保持在128 mAh/g以上,1和3 C的放电容量在30次循环后也分别保持在122和101 mAh/g以上  相似文献   

16.
以溶胶前驱体为纺丝液,通过静电纺丝法合成锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2和LiNi3/8Co1/4Mn3/8O2纳米纤维.采用原子力显微镜(AFM)、X射线衍射(XRD)、充放电实验对纳米纤维的形貌、结构和电化学性能进行研究.结果表明,纳米纤维的直径在150~200 nm之间,且具有典型的α-NaFeO2层状结构.LiNi1/3Co1/3Mn1/3O2和LiNi3/8Co1/4Mn3/8O2纳米纤维的首次放电容量均超过170 mAh·g-1,50次循环后容量保持率在90%以上.  相似文献   

17.
以Mn2+和NH4HCO3为原料,通过控制结晶法合成球形MnCO3前驱体模板。以LiNO3和MnCO3为原料,按照一定的摩尔比机械混合,在700°C下煅烧8h,合成高倍率性能和长循环性能的球形尖晶石LiMn2O4材料。分别考查原料的摩尔比、反应时间以及反应温度对前驱体MnCO3形貌和产率的影响。采用X射线粉末衍射和扫描电镜对合成的MnCO3和LiMn2O4进行表征,对LiMn2O4样品进行室温条件下的充放电性能测试。电化学测试结果表明:尖晶石锰酸锂微球在10C的放电倍率下的首次放电容量达90mA·h/g(1C放电容量为148mA/g),800次循环后容量保持率达到75%。该方法合成的LiMn2O4微球作为高功率型锂离子电池的正极材料有着较好的应用前景。  相似文献   

18.
以Li2CO3、NiO、Co2O3、MnO2、LiF和SiO2为原料,采用机械力活化固相法制备了Si4+和F-掺杂的锂离子电池正极材料LiNi1/3Co 1/3Mn1/3O2.通过X射线衍射(XRD)、扫描电镜(SEM)和电化学性能测试等技术研究了LiNi1/3Co1/3Mn1/3O2的结构特征、形貌及电化学性能等.结...  相似文献   

19.
To obtain homogenous layered oxide Li(Co1/3Ni1/3Ni1/3Mn1/3)O2 as a lithium insertion positive electrode material,the sol-gel process using citric acid as a chelating agent was applied.The material Li(Co1/3,Ni1/3Mn1/3)O2 was synthesized at different calcination temperatures.XRD experiment indicated that the hyered Li(Co1/3Ni1/3Mn1/3)O2material could he synthesized at a lower temperature of 800℃,and the oxidation state of Co,Ni,and Mn in the cathode confirmed by XPS were 3, 2,and 4,respectively.SEM observations showed that the synthesized material could form homogenous particle morphology with the particle size of about 200nm In spite of different calcination temperatures,the charge-discharge curves of all the samples for the initial cycle were similar,and the cathode synthesized at 900℃ showed a small irreversible capacity loss of 11.24% and a high discharge capacity of 212.2 mAh.g-1 in the voltage range of 2.9-4.6 V.  相似文献   

20.
采用低温共沉淀-水热-煅烧法合成了锂离子电池Fe-Ni-Mn体系正极材料Li1+x(Fey/2Niy/2Mn1-y)1-xO2,并用XRD、SEM、ICP光谱和电化学性能测试对材料进行了表征.XRD测试和ICP分析表明,Fe、Ni取代Li2MnO3中的部分Mn,形成很好的固溶结构yLiFe1/2Ni1/2O2-(1-y)Li2MnO3 (y=0.l,0.2,0.3,0.4,0.5).SEM测试表明,取代量y不同,材料的表观形貌有所不同,y=0.4时材料的颗粒粒径均匀、较小,呈类球形结构.电化学性能测试表明,当y=0.4时,循环稳定性最好,充放电50次后放电比容量仍可维持在195.0 mAh/g,放电中值电压为3.5 V,y=0.4时样品在大倍率放电下的电化学性能表现良好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号