共查询到20条相似文献,搜索用时 93 毫秒
1.
热镀锌层上磷酸锌转化膜的生长与耐蚀性 总被引:6,自引:0,他引:6
热镀锌钢板在pH3.0、45℃的磷酸锌溶液中磷化2~600s,用扫描电镜、能谱仪和X射线衍射仪分析磷化膜的组织形貌和成分,并探讨膜层的生长行为。结果表明:磷酸锌晶体在锌晶粒内及晶界处均可成核,开始是以接近平行的片状生长,并逐渐向多方向生长成扇骨状的晶片。随着磷酸锌晶体的成核和生长,磷化膜的覆盖率增加,但晶体之间的孔隙难以完全消除;长大的磷酸锌晶片容易折断脱落,导致磷化后期膜层的质量增量减小;磷化膜主要由Zn3(PO4)2.4H2O组成。热镀锌钢板经磷化处理后,耐蚀性显著提高,磷化膜的耐蚀性随磷化时间和膜层覆盖率的增加而提高。 相似文献
2.
The phosphated hot-dip galvanized (HDG) sheets were post-sealed with sodium molybdate solution to improve the corrosion resistance of phosphate coatings. The morphology, chemical composition and corrosion resistance of the coatings were investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Tafel polarization measurements and neutral salt spray (NSS) tests, and were compared with those of the single coatings. The results show that post-sealing the phosphated HDG steel with molyhdate solution, the pores among the zinc phosphate crystals are sealed with molybdate films containing Zn, P, O and Mo, and the continuous composite coatings are formed. The suppression of both the anodic and the cathodic processes of zinc corrosion on the samples are enhanced significantly. The synergistic corrosion protection effect of the single phosphate coatings and molybdate films for zinc is evident. The corrosion resistance of the composite coatings increases with phosphating time up to 300 s. 相似文献
3.
Effect of molybdate post-sealing on the corrosion resistance of zinc phosphate coatings on hot-dip galvanized steel 总被引:3,自引:0,他引:3
The technique of post-sealing the phosphated hot-dip galvanized (HDG) steel with molybdate solution was addressed. The composition and corrosion resistance of the improved phosphate coatings were investigated by SEM, EDS, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements, and neutral salt spray (NSS) test. The results showed that molybdate films were formed in the pores of phosphate coatings, and the compact and complete composite coatings composed of phosphate coatings and molybdate films were formed on the zinc surface, resulting in that both the anodic and cathodic processes of zinc corrosion were inhibited remarkably; the corrosion protection efficiency values were increased; and the electrochemical impedance values were enhanced at least one order of magnitude. The low frequency impedance values for the composite coatings were increased at the initial stages of immersion in 5% sodium chloride solution, indicating the self-repairing activity of the composite coatings. 相似文献
4.
1 INTRODUCTIONChromateconversionfilmshavebeenappliedasfinalanticorrosivetreatmentstogalvanizedsteelformanyyears ,theireffectivenessinthisapplicationiswidelyac knowledged .However ,withtheadventofincreasingenvi ronmentalawareness ,thetoxicnatureofchromium (… 相似文献
5.
Effect of silicate pretreatment, post-sealing and additives on corrosion resistance of phosphated galvanized steel 总被引:1,自引:0,他引:1
Sodium silicate (water glass) pretreatment before phosphating, silicate post-sealing after phosphating and adding silicate to a traditional phosphating solution were respectively carried out to obtain the improved phosphate coatings with high corrosion resistance and coverage on hot-dip galvanized(HDG) steel. The corrosion resistance, morphology and chemical composition of the coatings were investigated using neutral salt spray(NSS) tests, scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS). The results show that pretreatment HDG steel with silicate solutions, phosphate coatings with finer crystals and higher coverage are formed and the corrosion resistance is enhanced. Adding silicate to a traditional phosphating solution, the surface morphology of the coatings is nearly unchanged. The corrosion resistance of the coatings is mainly dependent on phosphating time. Phosphating for a longer time (such as 5 min), the corrosion resistance, increasing with concentration of silicate, is improved significantly. Post-sealing the phosphated HDG steel with silicate solutions, the pores among the zinc phosphate crystals are sealed with the films containing Si, P, O and Zn and the continuous composite coatings are formed. The corrosion resistance of the composite coatings, related to the pH value, contents of hydrated gel of silica and Si2O^2- 5 and post-sealing time, is increased markedly. The improved coatings with optimal corrosion resistance are obtained for phosphating 5 min and post-sealing with 5 g/L silicate solution for 10 min. 相似文献
6.
1Introduction For a long time,chromate compounds Cr(VI)have been used as effective and inexpensive corrosion inhibitors for zinc and zinc coating.However,with the advent of increasing environmental awareness,the toxicity and carcinogenic nature of Cr(VI)b… 相似文献
7.
8.
镀液温度对AZ31镁合金表面锌钙系磷酸盐转化膜耐蚀性的影响 总被引:1,自引:0,他引:1
采用化学沉积方法在AZ31镁合金表面制备锌钙系磷酸盐转化膜。利用扫描电子显微镜(SEM)和电化学方法研究镀液温度对镁合金AZ31表面磷酸盐转化膜表面形貌及其耐蚀性能的影响。利用电子能谱仪(EDS)、光电子能谱(XPS)和X射线衍射仪(XRD)分析膜层化学成分、相结构。研究表明:当温度为50℃时,转化膜层晶粒均匀、完整,耐蚀性较好;膜层化学成分主要由O、P、Zn和Mg元素以及微量Ca组成,主要相组成为Zn3(PO4)2·4H2O;锌钙磷酸盐转化膜比磷酸锌转化膜具有更小的晶粒和更好的耐蚀性。 相似文献
9.
10.
The interface bond between steel fibers and concrete matrix is a key factor influencing bearing capacity of steel fiber reinforced concrete (SFRC). In order to improve the interface bond strength and corrosion resistance, a kind of method was put forward by depositing zinc phosphate (ZnPh) coating on steel fiber surface in this paper. The corrosion behavior was investigated in 5% NaCl solution by using linear polarization measurement. Microstructure analysis (SEM and EDX) and fiber pull‐out test in combination with linear polarization measurement were carried out. The results prove that ZnPh coatings fabricated on the carbon steel surface can not only protect steel fiber against corrosion, but also enhance the mechanical interlocking bonds between fibers and matrix. 相似文献
11.
12.
In this study, the polytetrafluoroethylene (PTFE) composite ceramic coatings with hybrid aluminum dihydrogen phosphate (AP) are prepared on AISI 304L stainless steel by spraying and heat curing to improve the corrosion resistance of the coatings. AP is hybridized with methyltriethoxysilane (MTES), and the structure of the hybrid AP is characterized by Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. Contact angle tests, scratch tests, and electrochemical experiments are used to investigate the corrosion behavior of composite ceramic coatings. In addition, scanning electron microscopy is used to examine the microscopic morphology of the coatings after corrosion to investigate the mechanism of the hybrid AP on the corrosion resistance of the composite ceramic coatings. The findings reveal that MTES successfully hybridizes with AP and implants the –CH3 hydrophobic group in AP, which improves the hydrophobicity of composite coatings. The corrosion potential of hybrid AP coatings all move in a positive direction, and the corrosion current density is lower than that of unhybridized AP coatings. The corrosion current density of the coating is about 2.931e?008 A/cm2 when the MTES content is 5 wt%, which is 20% less than that of the unhybridized AP coating. Results indicate hybrid AP can significantly improve the corrosion resistance of PTFE composite ceramic coatings with the best corrosion resistance occurring when the content of MTES is 5 wt%. 相似文献
13.
B. RamezanzadehM.M. Attar 《Surface & coatings technology》2011,205(19):4649-4657
Hot-dip galvanized steel (HDG) samples were chemically treated by Cr(III), Cr(VI), Cr(III)-Co(II) and Cr(III)-Ni(II) conversion coatings. Epoxy nanocomposites were prepared using 2 wt.%, 3.5 wt.%, 5 wt.% and 6.5 wt.% nano-ZnO. Electrochemical impedance spectroscopy (EIS), pull-off adhesion tester and scanning electron microscope (SEM) were utilized to evaluate epoxy coatings properties on the surface of pre-treated HDG samples. Results showed that addition of nano-ZnO particles (specially 3.5 wt.%) can significantly improve the corrosion resistance of the epoxy coating on HDG. Decrease of contact angle (φ) and increase of surface roughness (Ra) of the pre-treated HDG samples were obtained. Decrease of the value of φ was more pronounced when the Cr(III) pre-treated samples were post-treated by Cr(III)-Co(II) and Cr(III)-Ni(II) conversion coatings (CCs). The dry and wet adhesion strengths of the epoxy coating to HDG were significantly increased after the surface treatment of the samples. Increase of the adhesion strength and decrease of the adhesion loss were more pronounced on Cr(III)-Co(II) and Cr(III)-Ni(II) post-treated samples. The corrosion resistance of epoxy coating was also increased on the surface of pre-treated HDG samples. Increase of the corrosion resistance of the Cr(III) pre-treated HDG samples was more pronounced on the samples which were post-treated by Co(II) and Ni(II). 相似文献
14.
将热镀锌钢板浸入含有25 g/L Ce(NO3)3·6H2O、4~6 g/L H2O2(30%)、15~20 g/L H3Cit的处理液中,在70℃下处理10 s~240 min,从而在其表面获得铈盐转化膜。采用中性盐雾试验(NSS)和电化学极化曲线来分析膜层耐蚀性能,确定最佳成膜时间范围。采用扫描电镜(SEM)观察膜层的微观形貌,利用能谱仪(EDS)、X射线光电子能谱仪(XPS)、红外吸收光谱仪(IR)分析膜层的化学组成。结果表明:处理时间为10 min左右的铈盐转化膜耐腐蚀性能最优,最佳工艺条件下得到的铈盐转化膜的耐蚀性能与铬酸盐转化膜的相当;随着处理时间的延长,膜的厚度增加,膜层的裂纹变宽;处理时间超过10 min后膜层逐步产生脱落,耐腐蚀性能也随之降低;转化膜的生长过程中,前期以柠檬酸铈吸附膜的沉积为主,后期以Ce(OH)3/Ce2O3及Ce(OH)4/CeO2的沉积占主导。 相似文献
15.
16.
The effect of Mg2+ in the phosphate solution on the microstructural evolution and corrosion resistance of the coating on hot-dip galvanized steel has been explored. Surface morphology observations reveal that increasing the solution Mg2+ concentration increases the population density and refines the grain size of the phosphate grains. In the presence of Mg2+, the phosphate coating is composed of mixed Zn phosphate hydrate and (Zn, Mg) phosphate hydrate. Furthermore, elevating Mg2+ in the solution reduces the porosity of the phosphate coating. As a result, the corrosion resistance of the phosphate coating is improved. 相似文献
17.
镁合金表面化学转化膜研究进展 总被引:1,自引:0,他引:1
总结镁合金表面化学转化膜的研究现状,介绍铬酸盐转化膜、锡酸盐转化膜、磷酸盐/高锰酸盐转化膜、稀土转化膜、植酸转化膜和钼酸转化膜的处理工艺,讨论磷酸盐/高锰酸盐转化膜的成膜机理,分析各种化学转化膜的优缺点,展望今后镁合金表面化学转化膜的发展方向。 相似文献
18.
溶液温度对医用Mg-Li—Ca合金表面锌钙系磷酸盐转化膜耐蚀性能的影响 总被引:2,自引:0,他引:2
考察不同磷化液温度对Mg-Li-Ca合金表面锌钙磷酸盐转化膜质量和耐蚀性能的影响。利用扫描电子显微镜、电子探针、能谱仪、X射线衍射和傅里叶红外光谱研究转化膜的表面形貌、化学成分和物相,采用析氢腐蚀实验和动电位电化学技术以及电化学阻抗研究磷化液温度对 Mg-Li-Ca 合金表面磷酸盐转化膜耐蚀性能的影响。结果表明:当溶液温度低于45℃时,膜层主要由Zn和ZnO组成,而当温度高于50℃时,膜层的主要相为Zn3(PO4)2·4H2O、少量的Zn和ZnO;在55℃温度下制备的磷酸盐转化膜的耐蚀性能最好;在40~50℃下制备的膜,由于镁基体与锌之间形成的电偶腐蚀而加快了其析氢速率。 相似文献
19.
Rongchang Zeng Zidong LanLinghong Kong Yuanding HuangHongzhi Cui 《Surface & coatings technology》2011,205(11):3347-3355
Two kinds of phosphate conversion coatings, including zinc phosphate coating and zinc-calcium phosphate coating, were prepared on the surface of AZ31 alloy in phosphate baths. The morphologies of these coatings were observed using scanning electron microscopy. Their chemical compositions and structures were characterized using energy-dispersive X-ray spectrum, X-ray photoelectron spectroscopy and X-ray diffraction. The corrosion resistance of the coatings was evaluated by potentiodynamic polarization technique. The results show that the flowerlike Zn-Ca phosphate conversion coatings are mainly composed of hopeite (Zn3(PO4)2·4H2O). They have a quite different morphology from the dry-riverbed-like Zn phosphate coatings that consist of MgO, MgF2, Zn or ZnO and hopeite. Both of the zinc and zinc-calcium phosphate coatings can remarkably reduce the corrosion current density of the substrates. The Zn-Ca coating exhibits better corrosion resistance than the Zn coating. Introduction of calcium into the phosphate baths leads to the full crystallinity of the Zn-Ca coating. 相似文献
20.
Three molybdate-based conversion coatings on electroplated zinc have been prepared and the composition, morphology, and structure of these coatings are measured by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. It was found that these coatings with ‘meshwork’ surface were complex coatings composed of multiple compounds. Molybdenum species were present in the conversion coating as Mo (VI) and Mo (IV) compounds. The results of neutral salt spray test showed that molybdate-based conversion coatings with the addition of H3PO4, SiO2 and TiOSO4 in the passivation baths possess higher corrosion resistance compared with chromate conversion coatings, which was due to the compactness and anti-corrosion essence of the conversion coating. 相似文献