首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The effect of Cu^2+ ions on bioleaching of marmatite was investigated through shake leaching experiments. The bacteria inoculated are a mixed culture ofAcidithiobacillusferrooxidans, Acidithiobacillus thiooxidans and Lepthospirillumferrooxidans. The results show that zinc is selectively leached, and the addition of appropriate content of Cu^2+ ions has positive effect on the bioleaching of marmatite. SEM and EDX analyses of the leaching residue reveal that a product layer composed of iron sulfide, elemental sulfur and jarosite forms on the mineral surface. The biooxidation of elemental sulfur is catalyzed by the Cu^2+ ions, which eliminate the barrier to bioleaching of marmatite and keep low pH value. With the addition of 0.5 g/L Cu^2+ ions, the maximum zinc extraction rate reaches 73% after 23 d at the temperature of 30 ℃ with the pulp density of 10%, while that of iron is only about 10%.  相似文献   

2.
利用嗜温混合菌Acidithiobacillus ferrooxidans,Acidithiobacillus thiooxidans和Leptospirillum ferrooxidans对低品位复杂Cu-Zn-Pb-Fe-Ag-Au硫化精矿在曝气生物浸出反应器中进行生物浸出。该菌种为从塞尔维亚Bor地下铜矿的酸性溶液中筛选出一种嗜热嗜酸菌。营养液为p H 1.6的9K营养液。87%的矿物粒度大于10μm,矿浆密度为8%(w/v)。在测试条件下,锌、铜和铁的浸出率分别达到89%、83%和68%。动力学分析表明,浸出过程与Spencer-Topley模型相符,受局部反应扩散控制。  相似文献   

3.
采用纯种L.ferrooxidans菌研究矿浆浓度、pH及外加Fe3+离子对铁闪锌矿生物浸出的影响。结果表明,锌的浸出率随着矿浆浓度的降低而增加。在生物浸出过程中调节pH值到1.6对铁闪锌矿的溶解有促进作用。外加Fe3+离子加速了铁闪锌矿的生物浸出,但当外加Fe3+离子浓度超过2.5g/L时,促进作用变弱。这是因为高浓度的Fe3+离子会对细菌生长产生抑制作用且促进黄钾铁矾的生成。在L.ferrooxidans菌存在条件下,利用电化学测试方法进一步了解有、无外加Fe3+离子时铁闪锌矿的溶解过程。实验数据表明,外加Fe3+离子可以增加腐蚀电流密度,有利于锌的提取。交流阻抗谱表明,添加Fe3+离子后没有改变反应过程的控制步骤。  相似文献   

4.
Bioleaching of marmatite with a culture of Thiobacillus ferrooxidans and Thiobacillus thiooxidans in high concentration of iron was studied,the results show that the zine leaching rate of the mixed culture is faster than that of the sole Thiobacillus ferrooxidans,the increasing iron concentration in leaching solution enhances the zine leaching rate.The SEM analysis indicates that the chemical leaching residues is covered with porous solid layer of elemental sulfur,while elemental sulfur is not found in the bacterial leaching residues.The primary role of bacteria in bioleaching of sphalerite is to oxidize the chemical leaching products of ferrous ion and elemental sulfur,thus the indirect mechanism prevails in the bioleaching of marmatite.  相似文献   

5.
The effect of Cu~(2+)ions on bioleaching of marmatite was investigated through shake leaching experiments.The bacteria inoculated are a mixed culture ofAcidithiobacillus ferrooxidans,Acidithiobacillus thiooxidans and Lepthospirillum ferrooxidans.The results show that zinc is selectively leached,and the addition of appropriate content of Cu~(2+)ions has positive effect on the bioleaching of marmatite.SEM and EDX analyses of the leaching residue reveal that a product layer composed of iron sulfide, element...  相似文献   

6.
研究了一株源自江西德兴铜矿矿区的中温嗜酸兼性异养菌Acidiphilium sp.DX1-1的分离、鉴定、特征及其浸矿行为。菌株Acidiphilium sp.DX1-1为短杆状革兰氏阴性菌,最适合的生长温度为30℃,最适合的生长pH约为3.5。该菌株具有广泛的底物利用特性,可以利用有机物进行异养生长并在细胞内积累聚羟基丁酸酯,也可以利用单质硫、三价铁等无机物进行自养生长。系统发育分析表明DX1-1属于Acidiphilium属,与Acidiphilium cryptum and Acidiphilium multivorum的同源性大于99%。在铁闪锌矿生物浸出过程中,Acidiphilium sp.DX1-1表现出极强的浸矿能力,其作用不仅仅是之前报道的作为其他自养嗜酸浸矿细菌的辅助者。在初始pH3.5时,DX1-1能够在一个月内单独地浸出铁闪锌矿中40%的锌。该浸出率高于它与A.ferrooxidans混合以及A.ferrooxidans单独浸出铁闪锌矿(初始pH均为2.0)的浸出率。  相似文献   

7.
This paper elaborated on the sustainability of the copper extraction process. In fact, an alternative copper extraction route from mixed sulphide ores, chalcopyrite and chalcocite using mesophilic biomass consortium at 33.3 °C and ferric leaching process were attempted. Bioleaching experiments were settled with a fraction size of −75+53 µm. Bacteria were used as the catalyst. A copper yield of 65.50% was obtained. On the other hand, in ferric leaching process, with a fraction size of −53+38 µm, when the temperature was increased to 70 °C, the copper leaching rate increased to 78.52%. Thus, comparatively, the mesophilic bioleaching process showed a more obvious advantage in copper extraction than leaching process with a high temperature. However, it has been resolved from the characterization performed using SEM−EDS, FTIR and XRD observations coupled with different thermodynamic approaches that, the indirect mechanism is the main leaching mechanism, with three transitory mechanisms (polysulphide, thiosulphate and elemental sulphur mechanisms) for the mixed chalcopyrite−chalcocite ore. Meanwhile, the speciation turns into Cu2S−CuS−Cu5FeS4−Cu2S before turning into CuSO4. While ferrous oxidation and the formation of ferric sulphate occur, and there is a formation of strong acid as bacteria digest sulphide minerals into copper sulphate at low temperature, which is why this copper production scenario requires a redox potential more than 550 mV at room temperature for high copper leaching rate.  相似文献   

8.
Ida~(2-)-H_2O体系浸出低品位氧化锌矿   总被引:1,自引:0,他引:1  
采用Ida2--H2O体系(亚氨二乙酸盐水溶液)处理高碱性脉石型低品位氧化锌矿,考察浸出时间、液固比、配体总浓度、温度及pH值对矿物中主金属Zn及杂质元素Ca、Mg、Cu、Ni、Fe、Pb、Cd的溶出影响。结果表明:在弱碱性Ida2--H2O体系中,Ca、Mg、Fe不会被大量溶出,有价金属Cu、Ni、Pb、Cd可部分随主金属Zn溶出而进入浸出液;在浸出时间4h、液固比5:1、配体总浓度0.9mol/L、温度70℃、pH8的优化条件下,锌浸出率为76.6%。  相似文献   

9.
Microbial aspects of acid mine drainage and its bioremediation   总被引:1,自引:0,他引:1  
The role of chemolithotrophs such as Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans which were isolated from some abandoned mines and processed waste tailings in the generation of acid mine drainage and toxic metal dissolution was discussed. Mechanisms of acid formation and dissolution of copper, zinc, iron and arsenic from copper, lead-zinc and arsenopyrite-bearing sulfide ores and railings were established in the presence of Acidithiobacillus group of bacteria. Sulphate Reducing Bacteria(SRB) isolated from the above mine sites could be used to precipitate dissolved metals such as copper, zinc, iron and arsenic. Arsenic bioremediation was demonstrated through the use of native microorganisms such Thiomonas spp. which could oxidize arsenite to arsenate. Bioremoval of arsenic through the use of jarosite precipitates generated by Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans was also found to be very effective. Biotechnological processes hold great promise in the remediation of acid mine drainage and efficient removal of toxic metal ions such as copper, zinc and arsenic.  相似文献   

10.
Pyrite oxidation rates were examined under various conditions in the presence of A. ferrooxidans and L. ferriphilum, in which different pulp concentration, inoculation amount, external addition of Fe^3+ and initial pH value were performed. It is found that A. ferrooxidans and L. ferriphilum show similar behaviors in the bioleaching process. The increasing pulp concentration decreases the leaching rate of iron, and external addition of high concentration Fe^3+ is also adverse to leaching pyrite. The increased inoculation amount and high initial pH value are beneficial to leaching pyrite, and these changed conditions bring more obvious effects on leaching pyrite by L. ferriphilum than by A. ferrooxidans. The results also show that adjusting the pH values in leaching process baffles leaching pyrite due to the formed jarosite. Jarosite formed in leaching process was observed using XRD, SEM and energy spectrum analysis, and a considerable amount of debris with a crystalline morphology is present on the surface of pyrite. The results imply that the indirect action is more important for bioleaching pyrite.  相似文献   

11.
碳质金矿的碳质物及生物氧化预处理研究现状   总被引:1,自引:0,他引:1  
碳质金矿是一种重要的难处理金矿。研究发现,其碳质物主要包括元素碳、有机酸和烃类物质。在氰化浸金过程中碳质物可通过类活性炭的吸附方式将已溶解的金劫走。目前,已有的预处理方法主要有高温焙烧法、生物氧化法、化学氧化法、竞争吸附法、覆盖抑制法、微波加热法。生物氧化法因具有条件温和、流程简单、能耗低、环境友好等优点得以迅速发展。与生物氧化预处理有关的微生物主要有氧化亚铁硫杆菌、氧化硫硫杆菌、氧化亚铁钩端螺旋菌等化能无机自养菌。有关黄孢原毛平革菌、假单胞菌、多毛链霉菌在碳质物降解和钝化方面的研究也已展开。最后,分析了该技术存在的问题,并对其应用前景进行了展望。  相似文献   

12.
1 Introduction Acidithiobacillus ferrooxidans is a kind of Gram negative, aerobic, acidophilic and chemolitho- autotrophic bacteria which is mainly applied in bioleaching of sulphide ores for metal recovery[1]. Compared with the traditional metallurgy techniques, biohydrometallergy technology has the advantages of short process, less energy consumption, environment friendly and lower cost. Thus, biohydrometallurgy is one of the most important aspects in the process of sulphide ores. A. ferro…  相似文献   

13.
1 Introduction The bioleaching research has a great progress in metallurgy industry. A significant number of commercial applications have emerged and are able to compete with conventional processing, especially the application for the copper recovery. Fur…  相似文献   

14.
The effects of visible light and Cd2+ ion on chalcopyrite bioleaching in the presence of Acidithiobacillus ferrooxidans (A. ferrooxidans) were studied by scanning electron microscopy (SEM), synchrotron radiation X-ray diffraction (SR-XRD), and X-ray photoelectron spectroscopy (XPS). The results of bioleaching after 28 days showed that the copper dissolution increased by 4.96% with only visible light, the presence of Cd2+ alone exerted slight inhibition effect on chalcopyrite dissolution and the concentration of dissolved copper increased by 14.70% with visible light and 50 mg/L Cd2+. The results of chemical leaching showed that visible light can promote the circulation of iron. SEM results showed that Cd2+ promoted the attachment of A. ferrooxidans on chalcopyrite surface under visible light. SR-XRD and XPS results indicated that visible light and Cd2+ promoted chalcopyrite dissolution, but did not inhibit the formation of passivation. Finally, a model of synergistic catalysis mechanism of visible light and Cd2+ on chalcopyrite bioleaching was proposed.  相似文献   

15.
A dual cell system was used to study the output power, output voltage, galvanic polarization of anode and cathode, and the relationship between the electric quantity(Q) and some factors, such as the dissolved Fe2+ magnitude, the time in the electro- generative simultaneous leaching with bacteria(BEGSL) and without bacteria(EGSL). A three-electrode system was adopted to study their individual self-corrosion current, which was smaller compared with the galvanic current. The results show that the output power and voltage in BEGSL are higher than those in EGSL. The accumulated sulfur on the surface of sulfides produced in BEGSL can be oxidized by A. ferrooxidans, and the ratio of biologic electric quantity reaches 51.50% in 72 h. The first stage both in EGSL and in BEGSL is the dissolution of pyrite on the surface to ferrous ion and sulfur element, which was oxidized by A. ferrooxidans in the further procedure.  相似文献   

16.
Recovery of gallium from zinc concentrate by pressure oxygen leaching   总被引:2,自引:0,他引:2  
Zinc concentrate with high gallium content is one of the main resources of gallium.The gallium presents in the form of isomorphism in tetrahedron coordination with sulfur in sphalerite.The research was to investigate the amenability of zinc concentrate with high gallium to pressure oxygen leaching.The particle size,sulfuric acid concentration,oxygen partial pressure,additive amount,and time of reaction were studied.The extraction yields of gallium and zinc are 86%and 98%,respectively.The optimal condition is 100 g of zinc concentrate with particle size smaller than 38 lm,sulfuric acid concentration150 g L-1,leaching temperature 150℃,leaching time120 min,oxygen partial pressure 0.7 MPa,additive amount of 0.2 wt%.  相似文献   

17.
The bioleaching of pyrite and biosolubilization of rock phosphate (RP) in 9K basal salts medium were compared by the following strains of an autotrophic acidophilic bacterium, Acidithiobacillus ferrooxidans, a heterotrophic acidophilic bacterium, Acidiphilium cryptum, and mixed culture of At. ferrooxidans and A. cryptum. The results show that A. cryptum is effective in enhancing the bioleaching of pyrite and biosolubilization of RP in the presence of At. ferrooxidans, although it could not oxidize pyrite and solubilize RP by itself. This effect is demonstrated experimentally that A. cryptum enhances a decrease in pH and an increase in redox potential, concentration of total soluble iron and planktonic part bacterial number in the broth during pyrite bioleaching processes by At. ferrooxidans. The mixed culture of At. ferrooxidans and A. cryptum leads to the most extensive soluble phosphate released at 30 °C. Pulp density exceeding 3% is shown to adversely influence the release of soluble phosphate by the consortium of At. ferrooxidans and A. cryptum. It is essential to add pyrite to the 9K basal salts medium for the biosolubilization of RP by the mixed culture of At. ferrooxidans and A. cryptum, and the percentage of soluble phosphate released is the greatest when the mass ratio of RP to pyrite is 1:2 or 1:3.  相似文献   

18.
This study investigated the promotion effect of A. ferrooxidans on complex heavy metals coprecipitation process. A. ferrooxidans significantly enhanced the ferrous oxidation, which also promoted the formation of iron-oxyhydroxysulphate. Cu(II) concentration reduced to 0.058 mmol/L in A. ferrooxidans inoculated system, and Cd also reduced to the lowest concentration (0.085 mmol/L). Pb was mainly immobilized as anglesite and iron-oxyhydroxysulphate promoted the removal of remanent Pb in solution. The precipitates are characterized by XRD, SEM, and FTIR analysis. The main component of the iron-oxyhydroxysulphate was well crystallized jarosite. A. ferrooxidans contributed to the formation of schwertmannite in later monovalent cation lack stage. Higher ferrous iron oxidation rate and Fe(III) supply rate in A. ferrooxidans inoculated system facilitated polyhedron crystal formation and the increase of particle diameter. Complex heavy metals could be incorporated into iron oxyhydroxysulphate crystal, and efficiently removed from acidic wastewater through A. ferrooxidans mediated coprecipitation.  相似文献   

19.
Hot-dipped galvanized steels are widely used in the automotive industry. The formability and damage resistance of zinc coatings depend strongly on their microstructure and adhesion to the steel substrate. In order to improve the mechanical performance of zinc coatings, the influence of their thickness, grain orientation and grain size on the zinc coating/steel substrate interface cracking behavior was studied. To this end, scanning electron microscopic observations during in situ tensile testing of zinc coated IF steel sheets were performed. After partial delamination of the zinc coating, cross sections of zinc coated steel were prepared to determine the location and extent of the interface cracking and the crystallographic orientation of the delaminated zinc grains. A two-grain model using a finite element method is proposed to analyze the zinc coating/steel substrate interface cracking behavior. In addition, the coating adhesion strength can be estimated based on this model. Both calculations and experimental observations show that: (i) a preferential zinc grain orientation with the [0001] direction parallel to the interface and (ii) a small grain size mitigate zinc coating/steel substrate interface cracking.  相似文献   

20.
In order to characterize the efficiency of copper bioleaching from anilite using pure cultures of Acidithiobacillus ferrooxidans in the absence and presence of ferrous sulphate, the experiments were carried out in shake flasks with or without 4 g/L ferrous sulphate (FeSO4·7H2O) at pH 2.0, 150 r/min and 35°C. The tests show that Acidithiobacillus ferrooxidans is unable to attack anilite in iron-free 9K medium. Anilite is rapidly oxidized by bacterial leaching when ferrous sulphate is added. Chemical oxidation of anilite is slow compared with Acidithiobacillus ferrooxidans initiated solubilization in the presence of iron. The EDAX analysis of the surfaces of anilite confirms that sulfur coating layer is present as a reaction product on the surface of the bacterially leached mineral.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号