首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A three-stage 21-26-GHz medium-power amplifier fabricated in f/sub T/=120 GHz 0.2 /spl mu/m SiGe HBT technology has 19 dB small-signal gain and 15 dB gain at maximum output power. It delivers 23 dBm, 19.75% PAE at 22 GHz, and 21 dBm, 13% PAE at 24 GHz. The differential common-base topology extends the supply to BV/sub CEO/ of the transistors (1.8 V). New on-chip components, such as onchip interconnects with floating differential shields, and self-shielding four-way power combining/dividing baluns provide inter-stage coupling and single-ended I/O interfaces at the input and output. The 2.45/spl times/2.45 mm/sup 2/ MMIC was mounted as a flipchip and tested without a heatsink.  相似文献   

2.
In the current trend toward portable applications, high-Q integrated inductors have gained considerable importance. Hence, much effort has been spent to increase the performance of on-chip Si inductors. In this paper, wafer-level packaging (WLP) techniques have been used to integrate state-of-the-art high-Q on-chip inductors on top of a five-levels-of-metal Cu damascene back-end of line (BEOL) silicon process using 20-/spl Omega//spl middot/cm Si wafers. The inductors are realized above passivation using thick post-processed low-K dielectric benzocyclobutene (BCB) and Cu layers. For a BCB-Cu thickness of 16 /spl mu/m/10 /spl mu/m, a peak single-ended Q factor of 38 at 4.7 GHz has been measured for a 1-nH inductor with a resonance frequency of 28 GHz. Removing substrate contacts slightly increases the performance, though a more significant improvement has been obtained by combining post-processed passives with patterned ground shields: for a 2.3-nH above integrated-circuit (above-IC) inductor, a 115% increase in Q/sub BW//sup max/ (37.5 versus 17.5) and a 192% increase in resonance frequency (F/sub res/: 12 GHz versus 5 GHz) have been obtained as compared to the equivalent BEOL realization with a patterned ground shield. Next to inductors, high-quality on-chip transmission lines may be realized in the WLP layers. Losses below -0.2 dB/mm at 25 GHz have been measured for 50-/spl Omega/ post-processed coplanar-waveguide lines, above-IC thin-film microstrip lines have measured losses below -0.12 dB/mm at 25 GHz.  相似文献   

3.
A novel slow-wave transmission line with optimized slot-type floating shields in advanced CMOS technology is presented. Periodical slot-type floating shields are inserted beneath the transmission line to provide substrate shielding and to shorten the electromagnetic (EM) propagation wavelength. This is the first study that demonstrates how the wavelength, attenuation loss, and characteristic impedance can be adjusted by changing the strip length (SL), strip spacing (SS), and metal layer position of the slot-type floating shields. Wavelength shortening needs to be achieved with a tradeoff between slow-wave effect and attenuation loss. The slot-type floating shields with different SLs, SSs and metal layer positions are analyzed. It is concluded that minimum SL provides the most optimal result. A design guideline can be established to enable circuit designers to reach the most appropriate slot-type floating shields for optimal circuit performance. Transmission line test structures were fabricated by using 45-nm CMOS process technology. Both measurement and EM waves simulation were performed up to 50 GHz. Transmission lines are frequently used at a length of half- or quarter-wavelength. With a shortened wavelength, a saving in silicon area of more than 67% can be achieved by using optimized slot-type floating shields. Experimental results demonstrated a higher effective relative permittivity value, which is improved by a factor of more than 9, and a better quality factor, which is improved by a factor of more than 6, as compared to conventional transmission lines.   相似文献   

4.
SiGe bipolar transceiver circuits operating at 60 GHz   总被引:2,自引:0,他引:2  
A low-noise amplifier, direct-conversion quadrature mixer, power amplifier, and voltage-controlled oscillators have been implemented in a 0.12-/spl mu/m, 200-GHz f/sub T/290-GHz f/sub MAX/ SiGe bipolar technology for operation at 60 GHz. At 61.5 GHz, the two-stage LNA achieves 4.5-dB NF, 15-dB gain, consuming 6 mA from 1.8 V. This is the first known demonstration of a silicon LNA at V-band. The downconverter consists of a preamplifier, I/Q double-balanced mixers, a frequency tripler, and a quadrature generator, and is again the first known demonstration of silicon active mixers at V-band. At 60 GHz, the downconverter gain is 18.6 dB and the NF is 13.3 dB, and the circuit consumes 55 mA from 2.7 V, while the output buffers consume an additional 52 mA. The balanced class-AB PA provides 10.8-dB gain, +11.2-dBm 1-dB compression point, 4.3% maximum PAE, and 16-dBm saturated output power. Finally, fully differential Colpitts VCOs have been implemented at 22 and 67 GHz. The 67-GHz VCO has a phase noise better than -98 dBc/Hz at 1-MHz offset, and provides a 3.1% tuning range for 8-mA current consumption from a 3-V supply.  相似文献   

5.
A fully integrated 24-GHz phased-array transmitter in CMOS   总被引:1,自引:0,他引:1  
This paper presents the first fully integrated 24-GHz phased-array transmitter designed using 0.18-/spl mu/m CMOS transistors. The four-element array includes four on-chip CMOS power amplifiers, with outputs matched to 50 /spl Omega/, that are each capable of generating up to 14.5 dBm of output power at 24 GHz. The heterodyne transmitter has a two-step quadrature up-conversion architecture with local oscillator (LO) frequencies of 4.8 and 19.2 GHz, which are generated by an on-chip frequency synthesizer. Four-bit LO path phase shifting is implemented in each element at 19.2 GHz, and the transmitter achieves a peak-to- ratio of 23 dB with raw beam-steering resolution of 7/spl deg/ for radiation normal to the array. The transmitter can support data rates of 500 Mb/s on each channel (with BPSK modulation) and occupies 6.8 mm /spl times/ 2.1 mm of die area.  相似文献   

6.
50-GHz integrated interconnects in silicon optical microbench technology   总被引:1,自引:0,他引:1  
A custom-designed silicon-based 50-GHz interconnect is integrated for packaging demonstrations of broadband optoelectronic (OE) applications in silicon optical microbench technology. The half-shielded (or partially shielded) 0.5-cm interconnect has 25-dB isolation and 0.9-dB transmission loss over 50 GHz. When implemented in this packaged architecture, the nature of the interconnect minimizes coupling and eliminates the need for an external test fixture that is prevalent in a more conventional approach. The interconnect is further demonstrated in a multiport electrical package to illustrate the potential of this architecture up to 40-Gb data rates, and the resulting package has insertion loss less than 5 dB at 50 GHz.  相似文献   

7.
This paper presents a patterned ground shield inserted between an on-chip spiral inductor and silicon substrate. The patterned ground shield can be realized in standard silicon technologies without additional processing steps. The impacts of shield resistance and pattern on inductance, parasitic resistances and capacitances, and quality factor are studied extensively. Experimental results show that a polysilicon patterned ground shield achieves the most improvement. At 1-2 GHz, the addition of the shield increases the inductor quality factor up to 33% and reduces the substrate coupling between two adjacent inductors by as much as 25 dB. We also demonstrate that the quality factor of a 2-GHz LC tank can be nearly doubled with a shielded inductor  相似文献   

8.
Silicon planar and three-dimensional inductors and transformers were designed and characterized on-wafer up to 100 GHz. Self-resonance frequencies (SRFs) beyond 100 GHz were obtained, demonstrating for the first time that spiral structures are suitable for applications such as 60-GHz wireless local area network and 77-GHz automotive RADAR. Minimizing area over substrate is critical to achieving high SRF. A stacked transformer is reported with S/sub 21/ of -2.5 dB at 50 GHz, and which offers improved performance and less area (30 /spl mu/m/spl times/30 /spl mu/m) than planar transformers or microstrip couplers. A compact inductor model is described, along with a methodology for extracting model parameters from simulated or measured y-parameters. Millimeter-wave SiGe BiCMOS mixer and voltage-controlled-oscillator circuits employing spiral inductors are presented with better or comparable performance to previously reported transmission-line-based circuits.  相似文献   

9.
A mask programmable technology to implement RF and microwave integrated circuits using an array of standard 90-nm CMOS transistors is presented. Using this technology, three wideband amplifiers with more than 15-dB forward transmission gain operating in different frequency bands inside a 4–22-GHz range are implemented. The amplifiers achieve high gain-bandwidth products (79–96 GHz) despite their standard multistage designs. These amplifiers are based on an identical transistor array interconnected with application specific coplanar waveguide (CPW) transmission lines and on-chip capacitors and resistors. CPW lines are implemented using a one-metal-layer post-processing technology over a thick Parylene-N (15 $mu{hbox{m}}$ ) dielectric layer that enables very low loss lines ( $sim$0.6 dB/mm at 20 GHz) and high-performance CMOS amplifiers. The proposed integration approach has the potential for implementing cost-efficient and high-performance RF and microwave circuits with a short turnaround time.   相似文献   

10.
A 90-nm silicon-on-insulator (SOI) CMOS system on-chip integrates high-performance FETs with 243-GHz F/sub t/, 208-GHz F/sub max/, 1.45-mS//spl mu/m gm, and sub 1.1-dB NFmin up to 26 GHz. Inductor Q of 20, VNCAP of 1.8-fF//spl mu/m/sup 2/, varactor with a tuning range as high as 25:1, and a low-loss microstrip. Transmission lines were successfully integrated without extra masks and processing steps. SOI and its low parasitic junction capacitance enables this high level of performance and will expand the use of CMOS for millimeter-wave applications.  相似文献   

11.
This third-generation 1.1-GHz 64-bit UltraSPARC microprocessor provides 1-MB on-chip level-2 cache, 4-Gb/s off chip memory bandwidth, and a new 200 MHz JBus interface that supports one to four processors. The 87.5-million transistor chip is implemented in a seven-layer-metal copper 0.13-/spl mu/m CMOS process and dissipates 53 W at 1.3 V and 1.1 GHz.  相似文献   

12.
This paper presents multifunctional microstrip transmission lines for designing a high port-isolation dual-frequency orthogonally polarized rectangular patch antenna and the antenna-integrated power amplifier. The proposed lines were realized through the integration of defected ground structures (DGSs) with conventional microstrip lines. A spiral-shaped DGS-integrated microstrip line enhances the port isolation of the antenna, while feeding the 2.0-GHz excitation to the antenna and filtering out the 2.5-GHz receiving signal from the other port. High-order harmonic signal suppression of the power amplifier at the 2.5-GHz port was accomplished by the dumbbell-shaped DGS, thereby improving the efficiency of the amplifier. Measurements show an improvement of 20 dB in port isolation and 3% in power-added efficiency relative to an identical RF front-end, but integrated with a conventional patch antenna. An image impedance of the DGS-integrated microstrip lines can be controlled by the integrated DGS geometries. Relatively high-impedances lines, i.e., 150 and 100 /spl Omega/, are effectively implemented using microstrip lines with 75- and 50-/spl Omega/ linewidths by incorporating the spiral- and dumbbell-shaped DGSs, respectively.  相似文献   

13.
High-Q factor three-dimensional inductors   总被引:2,自引:0,他引:2  
In this paper, the great flexibility of three-dimensional (3-D) monolithic-microwave integrated-circuit technology is used to improve the performance of on-chip inductors. A novel topology for high-Q factor spiral inductor that can be implemented in a single or multilevel configuration is proposed. Several inductors were fabricated on either silicon substrate (/spl rho/ = 30 /spl Omega/ /spl middot/ cm) or semi-insulating gallium-arsenide substrate demonstrating, more particularly, for GaAs technology, the interest of the multilevel configuration. A 1.38-nH double-level 3-D inductor formed on an Si substrate exhibits a very high peak Q factor of 52.8 at 13.6 GHz and a self-resonant frequency as high as 24.7 GHz. Our 4.9-nH double-level GaAs 3-D inductor achieves a peak Q factor of 35.9 at 4.7 GHz and a self-resonant frequency of 8 GHz. For each technology, the performance limits of the proposed inductors in terms of quality factor are discussed. Guidelines for the optimum design of 3-D inductors are provided for Si and GaAs technologies.  相似文献   

14.
This paper presents a low-supply voltage integrated CMOS voltage-controlled oscillator (VCO) with an on-chip digital VCO calibration control system. The VCO utilizes various state-of-the-art design methods to achieve low phase noise. The calibration system includes a novel high-speed digital divide by two circuit and a counter running on 1-GHz input to enable on-chip frequency measurement. An arithmetic unit and algorithms to perform the calibration are implemented using on-chip logic. Two different types of calibration methods have been implemented and measured in order to compare the proposed VCO gain optimization method with more conventional type of VCO calibration. The measurements show that the VCO design has phase noise from$-$120.5 dBc/Hz to$-$118.7 dBc/Hz @ 400-kHz offset, measured over the frequency range from 1.67 to 1.93 GHz. The proposed VCO gain optimization method is capable of reducing the$K_ VCO$peak-to-peak variation of the presented VCO design from 54.4% to 29.8% in DCS1800 and PCS1900 GSM transmission bands when compared to the conventional type of calibration method.  相似文献   

15.
This paper reports on a novel lumped balun topology, the second-order lattice balun, with broad-band performance. The design is based on synthetic transmission lines operating as impedance transformers. The characteristic impedance of the synthetic transmission lines may be chosen to obtain inherent impedance transformation. An analytical investigation results in closed formulas for optimum performance over a given bandwidth. It is shown that it is possible to design for equal ripple in amplitude balance and input reflection coefficient. The phase balance is theoretically perfect over the entire bandwidth. The concept is experimentally validated by a 1-GHz prototype fabricated with surface mounted chip components. It exhibits an amplitude balance better than 0.5 dB and a phase balance better than /spl plusmn/8/spl deg/ over an octave bandwidth. The effective area of the prototype is 7 /spl times/ 9 mm/sup 2/.  相似文献   

16.
Fully CMOS-compatible, highly suspended spiral inductors have been designed and fabricated on standard silicon substrates (1/spl sim/30 /spl Omega//spl middot/cm in resistivity) by surface micromachining technology (no substrate etch involved). The RF characteristics of the fabricated inductors have been measured and their equivalent circuit parameters have been extracted using a conventional lumped-element model. We have achieved a high peak Q-factor of 70 at 6 GHz with inductance of 1.38 nH (at 1 GHz) and a self-resonant frequency of over 20 GHz. To the best of our knowledge, this is the highest Q-factor ever reported on standard silicon substrates. This work has demonstrated that the proposed microelectromechanical systems (MEMS) inductors can be a viable technology option to meet the today's strong demands on high-Q on-chip inductors for multi-GHz silicon RF ICs.  相似文献   

17.
In this letter, the authors demonstrate that high quality factor and low power loss transformers can be obtained by using the CMOS process-compatible backside inductively coupled plasma (ICP) deep-trench technology to selectively remove the silicon underneath the transformers. A 62.4% (from 8.99 to 14.6) and a 205.8% (from 8.6 to 26.3) increase in the Q-factor, a 10.3% (from 0.697 to 0.769) and a 30.2% (from 0.652 to 0.849) increase in the maximum available power gain (G/sub Amax/), and a 0.43- (from 1.57 to 1.14 dB) and a 1.15-dB (from 1.86 to 0.71 dB) reduction in the minimum noise figure (NF/sub min/) were achieved at 5.2 and 10 GHz, respectively, for a bifilar transformer with overall dimension of 240/spl times/240 /spl mu/m/sup 2/ after the backside ICP etching. The values of G/sub Amax/ of 0.769 and 0.849 are both state-of-the-art results among all reported on-chip bifilar transformers. These results indicate that the backside ICP deep-trench technology is very promising for high-performance radio frequency integrated circuit applications.  相似文献   

18.
This letter reports the feasibility of using 2-mm-long on-chip antennas for communication over free space. Integration of antennas into radio frequency integrated circuits (RFICs) eliminates external transmission line connections and sophisticated packaging, which should lower the cost of wireless systems operating above 10 GHz. Mobile microwave probe stands have been developed for measurements at varying antenna pair separations. Antenna-pair gains for 2-mm-long integrated zigzag dipole antennas fabricated on 20-/spl Omega/-cm silicon substrates have been characterized near 24 GHz for separations up to 15 m. The antenna-pair gains show R/sup -2/ dependence up to /spl sim/4-5 m. The antennas were found to be sufficient for use up to 5 m and possibly larger separations.  相似文献   

19.
Transients in shielded on-chip interconnections are studied theoretically for grounded and ungrounded shields. The model is based on analytical solutions to telegrapher's equations. The properties of interconnections and shields are identified that affect transients and propagation delays in signal lines. It is shown that cross coupling may exist between lines using a common shield. The magnitude of electromagnetic interference in shielded lines is estimated.  相似文献   

20.
We present the design of an integrated multiband phase shifter in RF CMOS technology for phased array transmitters. The phase shifter has an embedded classical distributed amplifier for loss compensation. The phase shifter achieves a more than 180/spl deg/ phase tuning range in a 2.4-GHz band and a measured more than 360/spl deg/ phase tuning range in both 3.5-GHz and 5.8-GHz bands. The return loss is less than -10dB at all conditions. The feasibility for transmitter applications is verified through measurements. The output power at a 1-dB compression point (P/sub 1 dB/) is as high as 0.4dBmat 2.4GHz. The relative phase deviation around P/sub 1 dB/ is less than 3/spl deg/. The design is implemented in 0.18-/spl mu/mRF CMOS technology, and the chip size is 1200/spl mu/m /spl times/ 2300 /spl mu/m including pads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号