首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 135 毫秒
1.
氮化硅结合碳化硅窑具材料   总被引:1,自引:0,他引:1  
梁振海  吴树芳 《陶瓷》1996,(5):19-21,10
本文介绍了氮化硅结合碳化硅窑具的制造工艺原理及生产工艺技术,报道了该窑具的材料性能和各类窑具的品种特点。氮化硅结合碳化硅材料以其优异的性能,独特的成形技术和氮化工艺,可生产出轻量化、组合化的现代窑具。  相似文献   

2.
氮化硅结合碳化硅材料的研究   总被引:2,自引:0,他引:2  
梁振海  郝小勇 《陶瓷》1998,(5):16-19
本文系对省部级攻关项目“氮化硅结合碳化硅材料和制品的开发研究”研究部分的总结,分别对氮化硅结合碳化硅材料制备过程的颗粒级配,浆料外加剂,部分成形技术和准静态氮化工艺进行了研究.  相似文献   

3.
氮化硅结合碳化硅窑具的抗热震性能被破坏、不合理的支撑方式、承重变形因素导致其使用性能降低,影响了氮化硅结合碳化硅窑具的使用寿命。本研究制备了氮化硅结合碳化硅窑具,并结合生产实际主要研究了如何提高材料的抗氧化性、抗热震性以及其他高温理化性能,使氮化硅结合碳化硅窑具使用寿命延长。  相似文献   

4.
氮化硅结合碳化硅耐火材料的氧化   总被引:5,自引:0,他引:5  
氮化硅结合碳化硅耐火材料高温氧化后,其抗折强度有所提高,但经扫描电镜观察,材料断面结构已发生了明显的变化。该材料长时间在氧化气氛中使用,可靠性将下降。  相似文献   

5.
Si3N4—SiC材料的生产与应用   总被引:2,自引:0,他引:2  
本文通过对氮化硅结合碳化硅窑具材料生产的介绍,阐述了生产工艺流程、生产工艺原理,同时综述了氮化硅结合碳化硅窑具材料近几年在国内、欧洲及世界的世界的使用情况,作为现代窑具的替代产品,Si3N4-SiC具有较强的生命力。  相似文献   

6.
特种碳化硅窑具材料的研究   总被引:3,自引:0,他引:3  
研制出Si3N4/Sialon结合碳化硅窑具材料。用X射线衍射仪、光学显微镜和扫描电镜研究了材料的矿物组成和显微结构。材料的使用性能研究表明,这种材料具有很好的高温结构性能,其抗氧化性和抗热震性优于氮化硅结合碳化硅材料,制成棚板在重载隧道窑窑车上使用有较长的使用寿命。  相似文献   

7.
Si3N4—SiC材料的生产与应用   总被引:2,自引:0,他引:2  
张林  赵光华 《山东陶瓷》1999,22(1):11-17
本文通过氮化硅结合碳化硅窑具材料生产的介绍,阐述了生产工艺流程,生产工艺原理及生产技术,同时综述了氮化硅结合碳化硅窑具材料近几年在国内,欧洲及世界的使用情况,作了为现代窑具的替代产品,Si3N4-SiC具有较强的生命力。  相似文献   

8.
氮化硅结合碳化硅具有优异的力学性能、抗蠕变性能、抗热冲击性能、热学性能和抗化学侵蚀性能,被广泛应用于冶金、化工、机械和国防军工等领域.氮化硅结合碳化硅的服役环境恶劣,材料的力学性能、抗热震性能、抗侵蚀性能和抗氧化性能是影响其服役寿命的关键.本文针对如何提升氮化硅结合碳化硅材料的服役性能,对氮化硅结合碳化硅力学性能、抗热...  相似文献   

9.
张雍  郝岑  刘曙光 《山东化工》2016,(4):20-22,24
以莫来石、红柱石、氮化硅、碳化硅为主要原料,在空气气氛下烧成制备碳化硅-氮化硅-莫来石复相材料,并采用XRD、SEM样品进行了表征。结果表明:碳化硅化硅-氮化硅-莫来石复合材料在烧结过程中会在试样表面形成氧化层,分为氧化膜和致密层。氧化膜的主要成分为Si O2,其主要是碳化硅和氮化硅的氧化产物,随着试样中氮化硅含量的增加,试样表面形成的Si O2逐渐增多;试样截面出现致密层,随着试样中氮化硅含量的增加,试样的致密层厚度逐渐减小。  相似文献   

10.
以高纯碳化硅、单质硅为原料,树脂为结合剂,在氮气气氛1400℃下保温5 h制备出2种高氮化硅含量的氮化硅结合碳化硅耐火材料(试样S1和试样S2的单质硅添加质量分数分别为25%、35%).与市售氮化硅结合碳化硅耐火制品S0(单质硅添加质量分数为15%)对比,研究了3种材料的物相组成、抗折强度、透气性、耐磨性、显微结构等....  相似文献   

11.
氮化物结合碳化硅耐火材料的研究现状   总被引:7,自引:1,他引:7  
分别概述了以氮化硅、赛隆和氧氮化硅作为结合相 的SiC材料的结构特点、理化性能、生产工艺和应用情况,详细 介绍了国内这3种材料的研究现状,并对今后氮化物结合SiC 材料的研究内容提出了自己的观点。  相似文献   

12.
应根据碳化硅制品的独特性能和制品的实际工作需要来设计形状和尺寸。文中的建议简而易行;本设计对节约资源、提高经济效益、减轻炉体结构重量、延长炉衬使用寿命,对促进经济发展有着重要意义。  相似文献   

13.
氧氮化硅结合碳化硅制品的生产与使用   总被引:1,自引:1,他引:0  
以工业用黑色碳化硅砂、硅粉为主要原料,研制出了导热性能优良、抗热震性好、耐高温、耐侵蚀及耐磨损,且生产工艺较简单、成本较低的氧氮化硅结合的碳化硅制品.该产品已广泛应用于冶金炉、化工设备及发电用锅炉的内衬,并取得了较满意的效果。  相似文献   

14.
The piezoresistance coefficient was measured on co-doped silicon carbide ceramics. Evaluation samples of -silicon carbide ceramics were first fabricated by glass capsule HIP method using powder mixture of silicon carbide and aluminum nitride with various ratios. The resultant aluminum nitride added silicon carbide ceramics were doped with nitrogen by changing the post-HIP nitrogen gas pressure. The lattice parameter increased with the amount of adding aluminum nitride indicating that the incorporated aluminum substituted smaller silicon atoms. After post-HIP treatment, lattice parameter then decreased with nitrogen gas pressure. The piezoresistive coefficient increased with the addition of aluminum nitride, it further increased with the nitrogen doping pressure.  相似文献   

15.
SiC材料是一种性能优良的耐火材料,具有高导热性,高抗热震性,良好的高温强度等优点,但是由于碳化硅在氧化性气体,如O2,CO2,水蒸汽中发生膨胀劣化,严重影响SiC耐火材料的使用湿度和应用范围,本文主要讨论不同结合剂类型的SiC耐火材料的氧化特征,并提出抗氧化的可能途径。  相似文献   

16.
碳化硅耐火材料的研究进展   总被引:1,自引:0,他引:1  
我国从50年代,就开始研究先进的结构陶瓷,SiC耐火制品也有40多年的研究历史,在50年代初,研制成功并迅速建成投产,满足了炼锌竖罐精馏的特殊要求^[1]。前苏联、日本、美国对SiC耐火材料的研究更早一些。SiC耐火材料具有优良的高温性能,广泛应用于化工,冶金、能源、机械、建材、刀具等领域。本文简要介绍SiC耐火材料的研究进展。  相似文献   

17.
Silicon carbide ceramics have found widespread use due to their high corrosion stability. Both solid state-sintered silicon carbide, which has an extremely high corrosion resistance, and silicon-infiltrated silicon carbide are used for various applications. The latter material contains SiC as well as free silicon, which is less stable. Hence, in the present work, the corrosion behavior of silicon-infiltrated silicon carbide ceramics was investigated in NaOH solutions. Long-term corrosion experiments were conducted, and a method for analyzing the corrosion behavior in short-term experiments was developed. The short-term method is based on the accurate measurement of the corrosion depth by laser scanning microscopy on polished surfaces. The results of both methods were in good agreement. The advantage of the short-term method is that it provides information on changes in corrosion mechanisms and corrosion rates in the initial period and as a function of the impurities present. Preferential corrosion of Si at the interface to SiC was observed. TEM investigations revealed that this enhanced corrosion was caused by the segregation of impurities.  相似文献   

18.
Silicon carbide ceramic is a promising membrane material because of the high corrosive and high temperature resistance, and the excellent hydrophility. Here, a silicon carbide ceramic membrane with both substrate layer and separate layer composed of pure silicon carbide phase was successfully prepared. The effect of particle size on the microstructure and properties was investigated. The substrates were prepared from three silicon carbide particles at 2200 ℃. With the content increase of fine particle, the average pore size increased from 5.6 μm to 14.1 μm; meanwhile, the flexural strength of the substrate increased from 14.1 MPa to 24.6 MPa. The separation layers were made from particles of 3.0 μm and 0.5 μm. When sintered at 1900 ℃, the separation layer formed pore network with homogeneous structure. Such silicon ceramic membrane can be used in harsh conditions, including high temperature wastewater and strongly corrosive wastewater.  相似文献   

19.
Silicon carbide nanotubes were found to grow in straight as well as curved configurations by treating silicon carbide grains in an arc plasma reactor/furnace followed by 3 h of cooling (in air). By increasing the plasma treatment time from 16 min to 20 min, multi-wall tubes were found to change to single wall tubes with reduction in diameter from few nm to sub-nm. Typical in situ grown nanotubes were characterized by XRD, TEM, SAED, HRTEM, EDS and micro Raman spectroscopy, and it is established from these evaluations that the nanotubes are made up of silicon carbide and not carbon. A possible mechanism, involving reaction between the plasma dissociated carbon (solid) forming carbon nanotube and the left-out silicon (existing in vapour state) during the cooling period (3000–2680 °C), is suggested to be responsible for silicon carbide nanotube formation in the plasma assisted process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号