首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 147 毫秒
1.
摘要:为了研究DP980钢的高周疲劳性能,采用疲劳试验机对DP980钢和DP980钢激光焊接接头进行高周疲劳试验,得到Basquin方程,并利用光学金相显微镜和扫描电镜进行组织和断口分析。结果表明:DP980钢激光焊接接头的焊缝根部和顶部出现形状凹陷,焊接接头的质量为中等。DP980钢疲劳极限为341MPa,DP980钢激光焊接接头的疲劳极限为148MPa,激光焊接接头的疲劳极限较母材的疲劳极限降低约50%。对于DP980钢而言,铁素体/马氏体晶界是裂纹萌生的主要位置,疲劳断口为准解理断口。对于DP980钢激光焊接接头而言,疲劳裂纹源位于焊缝凹陷处,而非热影响区及母材,疲劳断口为解理断口。DP980钢和DP980钢激光焊接接头的疲劳裂纹扩展区均有明显的疲劳条带,并伴随有二次裂纹。  相似文献   

2.
采用酸洗、金相显微镜等分析手段,对焊接用钢盘条在拉拔过程中出现的表面裂纹、脆断等缺陷原因进行分析。结果表明:该盘条拉拔时出现严重的加工硬化,导致出现表面裂纹和断裂现象。  相似文献   

3.
郝春霞 《宽厚板》2021,27(1):12-16
为了探究夹杂物在低pH值、高浓度氯离子腐蚀环境下诱发点蚀的作用机理,本研究利用pH值0.85的10%NaCl溶液,模拟E36级船板钢货油舱下底板腐蚀环境;采用扫描电镜(SEM)、X射线能量色散谱分析(EDS)、夹杂物原位观察等手段,分析不同类型、尺寸、形状夹杂物对点蚀行为的影响.试验结果表明:耐腐蚀钢中存在MnS﹑Ti...  相似文献   

4.
为探究添加重稀土的E36高强船板钢的焊接工艺,本文采用自动埋弧焊工艺进行焊接试验,对焊接接头各部位及焊接热影响区进行拉力、弯曲、低温冲击、硬度及金相试验,分析重稀土对E36钢焊接接头各部位及焊接热影响区组织和性能的影响。结果显示:重稀土E36钢焊接性能优良,-40℃时热影响区冲击功为165 J,室温拉伸屈服强度、抗拉强度、伸长率及弯曲均合格;焊接热输入为70.6 kJ/cm时,过热区没有出现明显晶粒长大,晶粒尺寸细小均匀,避免了HSLA钢在焊接时过热区通常出现的粗晶脆化现象。根据试验结果,得出推荐的重稀土E36钢焊接工艺,为实际焊接生产提供了技术参考。  相似文献   

5.
落锤试验测定船板的无塑性转变温度   总被引:1,自引:0,他引:1  
无塑性转变温度是安全设计的重要参量,广泛应用于材料研究和产品质量控制过程。利用落锤试验方法,测定了AH36级船板的无塑性转变温度为-25℃,并对试验结果进行了评定。结果表明,落锤试验方法简单,试验数据重复性好,当船板的服役温度高于NDTT时,基本保证船板不会发生脆断。  相似文献   

6.
SS400钢是一种细晶强化的新一代钢铁材料.焊接对其疲劳性能的影响是人们关注的问题。笔者参照美国材料试验学会标准ASTME647—83的规定.采用紧凑拉伸CT试件对SS400钢及其焊接接头CT试件的疲劳裂纹扩展速率进行了测试。发现:母材的疲劳裂纹扩展存在两个不同速率的阶段,焊缝及热影响区的疲劳裂纹扩展速率均低于母材;热影响区的疲劳裂纹扩展速率介于焊缝与母材之间;焊接接头组织和性能的变化并未导致SS400钢疲劳性能的降低。  相似文献   

7.
15Cr14Co12Mo5Ni2齿轮钢的扭转疲劳特性及裂纹扩展行为   总被引:1,自引:0,他引:1  
李新宇  杨卯生  周晓龙  郭军 《钢铁》2017,52(9):84-91
 通过扭转疲劳试验,研究了15Cr14Co12Mo5Ni2钢的扭转疲劳断裂的裂纹扩展行为和夹杂物尺寸与扭转疲劳寿命之间的关系。得到了钢的扭转疲劳极限强度和[τ-N]曲线,15Cr14Co12Mo5Ni2钢的扭转疲劳极限强度为350 MPa,扭转疲劳寿命分散度较大。通过断口观察,发现15Cr14Co12Mo5Ni2钢的疲劳破坏模式以表面破坏和近表面破坏为主,主要由氧化物夹杂引起。通过计算应力强度因子[ΔK]和裂纹扩展门槛值[ΔKth]分析15Cr14Co12Mo5Ni2钢的疲劳裂纹扩展的断裂力学条件,试验钢在断裂过程中受载荷情况为,II型载荷—I型载荷—II型载荷—I+II型载荷,分别对应起裂源区、纤维区、疲劳裂纹扩展区和瞬断区;当有大裂纹产生时,则不会产生纤维区,受载荷情况则为:II型载荷—I+II型载荷。通过公式推导和数据拟合得到夹杂物尺寸和15Cr14Co12Mo5Ni2钢扭转疲劳寿命的关系,发现随着夹杂物尺寸减小,钢的[τ-N]曲线向高寿命区移动。当引起裂纹萌生的夹杂物尺寸小于5 μm时,在350 MPa应力下,15Cr14Co12Mo5Ni2钢的扭转疲劳寿命超过107循环周次。  相似文献   

8.
罗登  洪志伟  李丽  李健  杨丽  张学伟 《钢铁》2020,55(7):65-71
 为了研究结晶器喂钛线对EH36船板钢中夹杂物的影响,采用无水有机溶液电解分离提取钢中夹杂物,结合扫描电镜和能谱仪分析其三维形貌,尺寸和成分。试验结果表明,在结晶器喂钛线后,钢中硅铝酸钙夹杂物+外包裹MnS转变为硅铝酸钙钛+MnS夹杂物,三维表面从光滑转变为粗糙多孔的形貌。在焊接热模拟后的试样中,组织形貌从未加钛试样中的晶界铁素体和侧板条铁素体转变为钛处理试样中的针状铁素体,且夹杂物周围铁素体从块状转变为针状,韧性提高了70 J。通过热力学理论计算,分析船板钢中含钛氧化物夹杂物形成条件。计算结果表明,钛、铝与氧反应生成氧化物的过程存在竞争关系,当钢中钛质量分数为0.02%时,钢液中应严格控制铝质量分数不高于0.003 5%,才能保证钢液中大量生成含钛氧化物粒子。  相似文献   

9.
大线能量焊接高强船板钢氧化物冶金技术的新进展   总被引:1,自引:0,他引:1  
刘湃 《世界钢铁》2012,12(1):20-28
分析了中国船舶工业的现状、成就、挑战及发展趋势.为了提高船舶制造效率,采取了增加焊接线能量的措施.大线能量焊接时,由于高温停留时间长,相变冷却速度慢,焊接热影响区奥氏体晶粒急剧长大,得到侧板条铁素体为主的凝固组织,韧性恶化.氧化物冶金技术利用钢中的细小氧化物,通过促进晶内铁素体形核可明显改善焊接热影响区的组织.叙述了氧化物冶金的主要内容和该技术对船板钢的组织和性能的影响.介绍了日本一些钢铁公司开发的大线能量焊接高强船板钢氧化物冶金新技术.  相似文献   

10.
采用升降法对CSP工艺生产的2mm厚Ti微合金化高强钢的疲劳性能进行研究.结果发现:高强钢的抗拉强度为830 MPa;疲劳强度为685 MPa,约为抗拉强度的0.83倍;伸长率为18.8%.绘制了高强钢的S-N曲线,并拟合出疲劳寿命与最大应力的关系.通过扫描电镜对疲劳断裂机理进行了分析.宏观疲劳断口可见明显的裂纹源区、扩展区和瞬断区形貌.疲劳裂纹起始于带钢表面微裂纹;疲劳扩展区存在微观疲劳辉纹、二次裂纹和宏观疲劳贝纹线;瞬断区出现撕裂棱,兼有韧窝存在.  相似文献   

11.
Fatigue tests were performed on specimens containing weld heat affected zones at two orientations to the stress axis. Two heat affected zones were studied, one in Ducol W30 (a low alloy steel) and the other in mild steel. Under conditions of constant alternating and maximum stress intensity a fatigue crack only propagated at a uniform rate when it was remote from the heat affected zone. A heat affected zone which was harder than either the parent plate or weld metal was found to reduce crack propagation rates by a factor of up to 2 by restricting the plastic zone size around the crack tip. The changes in crack propagation rate could not be related uniquely to the conditions of the material immediately adjacent to the crack tip. Furthermore, the shape of the plastic zone was found to influence the direction of the propagation of a fatigue crack which always deviated toward regions of lower flow stress. A crack was never found to follow the interface between the weld metal and the parent metal heat affected zone because the flow stresses were not the same on either side of the interface. There was no difference in crack propagation mechanism between the parent plate and its heat affected zone for the stress conditions imposed. Formerly with Central Electricity Research Laboratories, Materials Division, Leatherhead, Surrey, England  相似文献   

12.
The crack tip opening displacement (CTOD) of small surface fatigue cracks (lengths of the grain size) in Al 2219-T851 depends upon the location of a crack relative to the grain boundaries. Both CTOD and crack tip closure stress are greatest when the crack tip is a large distance from the next grain boundary in the direction of crack propagation. Contrary to behavioral trends predicted by continuum fracture mechanics, crack length has no detectable effect on the contribution of plastic deformation to CTOD. It is apparent from these observations that the region of significant plastic deformation is confined by the grain boundaries, resulting in a plastic zone size that is insensitive to crack length and to external load.  相似文献   

13.
The change in fatigue failure initiation sites from a surface to subsurface location for two P/M nickel-based superalloys is analyzed. In particular the influences of defect size, shape, and population on the elevated temperature fatigue processes are assessed. The analysis shows that at high strain ranges, crack initiation occurs rapidly, and crack propagation rates determine the fatigue life and failure site. As a result, defect location (related to population) and size are the more important parameters. At lower strain ranges, however, crack initiation is critical in determining the failure origin, and this is primarily controlled by defect shape. Formerly with Metals and Ceramics Division, Air Force Materials Laboratory, Wright-Patterson AFB, OH.  相似文献   

14.
A common practice for the fabrication of steel orthotropic bridge decks in the United States is to use 80% partial joint penetration (PJP) groove welds between the closed ribs and deck plate. However, it is difficult to eliminate weld melt-through with the thin rib plates. Heat straightening after welding, sometimes combined with precambering, is used to meet the deck plate flatness requirement. To study the effects of both weld melt-through and distortion control measures on the fatigue resistance of the rib-to-deck plate welded joint, six full-scale two-span orthotropic deck specimens were subjected to laboratory testing. Specimens, 10 m long and 3 m wide with four closed ribs, were fabricated with and without weld melt-through and were heat straightened; three specimens were also precambered. To simulate the effect of repetitive truck traffic, each specimen was tested up to 8 million cycles. Test results showed that six cracks initiated from the weld toe outside the rib. Only one crack developed at the weld root inside the rib; this crack initiated from a location transitioning from the 80% PJP to 100% penetration weld. None of the cracks propagated through the deck plate thickness. Precambering was beneficial in fatigue resistance as two effectively precambered specimens did not experience cracking in the PJP welds.  相似文献   

15.
Recently,there have been the increase of ship size and the development of oil and gas in arctic region.These trends have led to the requirements such as high strength,good toughness at low temperature and good weldability.The high performance structural steels for shipbuilding and arctic offshore structure have been developed by our own micro-alloying and TMCP technologies.M-A constituent was precisely controlled in the both HAZ and base metal to get high toughness at low temperature.Also,the grain growth of austenite at HAZ was effectively suppressed by thermally stable TiN particles,leading to a good HAZ toughness.On the other hand,there has been the key issue of crack arrestability in large size container ship.The effect of joint design on crack arrestability was investigated to prevent a catastrophic failure along the block joint of hatch side coaming.A brittle crack arrest technique was developed without block joint shift,using an arrest weld in the end of hatch side coaming weld line.  相似文献   

16.
舞钢产高性能特厚桥梁用钢S355N   总被引:1,自引:0,他引:1  
肖强健  韦明 《宽厚板》2001,7(6):14-18
本文主要介绍了该钢研制的设计思路,通过钢板的机械性能、落锤实验(NDT)、弹性模量(E)实验、裂纹尖端张开位移CTOD实验、疲劳裂纹扩展速度da/dN试验、焊接热模拟等各种实验研究结果,证明了舞钢生产的高性能特厚桥梁用钢S355N(Z25)能满足各类桥梁的高参数设计要求。  相似文献   

17.
Aiming at the security problems of pipeline steel application, the different positions of the welded joints of circumferentially welding pipeline of X80 steel were investigated by microstructure observation, the hardness, Charpy impact toughness and crack tip opening displacement (CTOD) test at low temperature. The Vickers hardness test results show that there are local softened regions in heat-affected zone (HAZ). Charpy impact test indicate that the ductile–brittle transition temperature of weld is below ??60 °C, the ductile–brittle transition temperature of HAZ is around ??38 °C. CTOD test reveal that the fracture toughness of HAZ shows a large fluctuation since it is in the ductile–brittle transition temperature regime.  相似文献   

18.
Safe use of welded structures is dependent on fracture mechanics properties of welded joints. In present research, high strength low alloyed HSLA steel in a quenched and tempered condition, corresponding to the grade HT 80, was used. The fluxo cored arc welding process (FCAW), with CO2 as shielding gas, was used and two different tubular wires were selected. The aim of this paper is to analyse fracture behaviour of undermatched welded joints, and also to determine relevant parameters which contribute to higher critical values of fracture toughness. Towards this end three differently undermatched welded joints were analysed using results of testing the composite notched specimens with through thickness crack front positioned partly in the weld metal, partly in heat affected zone (HAZ) and partly in base material (BM).The presence of different microstructures along the pre‐crack fatigue front has an important effect on the critical crack tip opening displacement (CTOD). This value is the relevant parameter for safe service of welded structure. In the case of specimens with through thickness notch partly in the weld metal, partly in the heat affected zone and partly in the base material, i.e. using the composite notched specimen, fracture behaviour strongly depends on a partition of ductile base material, size and distribution of mismatching factor along vicinity of crack front. If local brittle zones occur in the process zone, ductile base metal can not prevent pop‐in instability, but it can reduce it to an insignificant level while the fracture toughness parameter is higher and the weakest link concept can not be applied.  相似文献   

19.
The effectiveness of MIG welding with Argo‐shield gas & ER70S‐6 electrode in joining LRS (Grade‐B) steel was investigated through structure–property correlation of the joint region. Microstructure, tensile and fatigue properties, and mode of fracture (SEM fractograph) were correlated. Fatigue behavior has been investigated in air and sea water with thin specimen at near‐endurance stress amplitude up to 105 cycles. The crack growth rate (da/dN) maintained a non‐linear relationship with logarithm of stress intensity factor range (logΔK) for the near‐threshold values of ΔK. Considerable hardness and microstructural variation was observed across the weldment. Weld with more pearlite content was found to possess higher hardness and strength than the parent steel. Though, both in weld and in parent steel, either in air or in sea water, fatigue crack propagated at very slow rate with significant intermittent crack arrest, weld provided much higher resistance to crack growth in air. However, sea water accelerated the crack growth in weld and brought it closer to that in the parent steel. The morphologically complex microstructure of weld suffered much faster crack propagation in sea water than in air. While fatigue fracture in parent steel (both in air and sea water) and weld in air was found to occur through dimple rupture via microvoid coalescence, weld in sea water exhibited a mixed mode of failure.  相似文献   

20.
Prediction and control of flaws in welds play important roles in design of complex structures against fatigue and fracture failure. Cold laps ‐ outer lack of fusion ‐ are small geometrical imperfections at weld toes, which act as fatigue crack initiation sites and reduce the life of welded structures drastically. The aim of this work is to characterize and categorize different types of such imperfections in the tandem gas metal arc welding process and find the mechanisms of their formation. Tandem welding process with different welding parameters was used to produce bead‐on‐plate coupons. These coupons were then sliced to smaller specimens for further investigations. For studying the weld toes, all the specimens were hit in an impact test machine and then the fracture surfaces of welds and base materials were analysed by scanning electron microscopy (SEM). Two types of cold laps were observed at weld toes, namely overlap and spatter. Observation and measurement showed that these imperfections are in the form of micro cracks with depth between 0.1 to 1.5mm and length between 0.1 to 4 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号