首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
采用室温拉伸和硬度测试研究了不同冷变形量对0Cr25Ni35AlTi室温力学性能和硬度的影响。通过OM、TEM对冷变形后的组织进行观察,分析不同冷变形后力学性能的变化机制。结果表明,随着变形量的增加,合金的抗拉强度、屈服强度和硬度增加。当变形量为20%时,合金的屈服强度提高了1.5倍,抗拉强度提高了1.2倍,分别达到了679和762 MPa。合金加工硬化指数随着冷变形量的增加而减小。在10%和15%形变量之间存在一个临界值,小于临界值时,位错运动主要是单滑移,真应力-真应变曲线可用Ludwigson模型描述;大于临界变形量,位错运动出现了多滑移和交滑移,真应力-真应变曲线可以用Hollomon方程描述。  相似文献   

2.
研究了30Mn20Al3无磁钢冷轧板经1000和800℃固溶处理10 min后的拉伸变形加工硬化行为和组织结构变化.结果表明:该钢的加工硬化速率在不同变形阶段随真应变的变化呈现不同的规律,加工硬化指数随真应变增加而增加.OM和TEM观察显示,变形量小时,滑移为主要变形机制;变形量增大,变形机制以形变孪晶与位错及形变孪晶之间的交互作用为主;1 000℃固溶处理的晶粒尺寸较800℃大,变形过程中产生的形变孪晶较多,且随着变形量增加,形变孪晶可持续形成,增大了TWIP效应;晶粒尺寸减小使变形过程中的形变孪晶产生的临界应力增大,抑制形变孪晶的产生,从而减小了TWIP效应.  相似文献   

3.
本文通过观察微观组织分析应变速率和变形温度对U720Li合金的热变形行为的影响,得出在变形初期,加工硬化占主导地位,不断增殖的位错推动真应力值迅速随着真应变而升高,继而达到峰值;到达峰值应力之后,随着变形量的继续增加,由于动态回复和动态再结晶的软化作用逐渐明显,加工硬化的效果失去主导地位,真应力值开始下降,而后硬化软化的作用均下降且影响力相近,应力值趋于某一恒定值。  相似文献   

4.
通过对低镍奥氏体不锈钢进行不同变形量的拉伸变形,研究了低镍奥氏体不锈钢冷变形和应变硬化机制。结果表明,低镍奥氏体不锈钢冷变形和应变硬化机制主要是应变诱发α′-马氏体相变和位错强化,随着变形量的增加应变诱发α′-马氏体量和位错塞积程度不断增加。低镍奥氏体不锈钢奥氏体稳定性要低于SUS304钢种,具有强烈的加工硬化效应;随着变形量的增加,应变诱发α′-马氏体量也不断增加,但应变诱发α′-马氏体增速不断降低,主要由于随着变形量的增加,变形热效应导致温度升高,奥氏体稳定性增加。  相似文献   

5.
采用Gleeb-3500热模拟实验机,对再结晶态TZM(Mo-0.39Ti-0.093Zr-0.017C)合金的热变形特征进行了研究。试样用粉末冶金的方法制备,经过70%变形量的高温锻造,然后分别在1100,1200,1300,1400,1500和1600℃的温度下退火,观察了TZM合金的再结晶过程。热模拟实验在1200℃的温度下进行,应变速率为0.1 s-1,变形量为30%,得到了压缩过程的真应力-应变曲线。研究结果表明,TZM合金的硬度随着退火温度的升高而显著降低,且下降的速率为0.13(HV/℃),1600℃退火后,晶粒已经充分长大,再结晶完成,TZM合金明显变软;完全再结晶后的TZM合金在1200℃下热压缩变形,当应变量小于5%时,应力随着应变的增加而迅速增加,加工硬化现象明显;当应变量大于5%时,应力随着应变的增加而缓慢增加,加工硬化速率降低。  相似文献   

6.
采用晶体相场方法研究预变形条件下样品在单轴拉应变作用下的纳观裂纹扩展行为。通过观察裂纹演化,分析裂纹扩展过程的体系自由能变化、应力-应变曲线、裂纹周长曲线和裂纹面积分数曲线,发现:无预变形的样品,在拉应变作用下,当应变量达到临界值时,在裂口附近萌生出位错,使得应变集中的应变能得到释放。虽然位错伴随着裂尖扩展,没有观察到裂尖发射位错现象,裂纹呈解理扩展模式。预剪切变形为1%和2%的样品,在裂纹扩展的过程,左右裂尖各存在一个位错对,这两个位错沿着各自的滑移面交替滑移,使得裂尖沿着两个滑移方向交替扩展,裂纹呈锯齿状。预剪切变形为3%的样品,在裂口处发射位错,在变形滑移带上诱发生成孤立的空穴串,随后发展成空洞并连通成为主裂纹。在主裂纹之外,还出现空洞萌生二次裂纹,整个裂纹扩展呈韧性扩展模式。预剪切变形量的增加,有助于裂纹由脆性扩展转化成韧性扩展。  相似文献   

7.
通过对316L不锈钢的不同变形量的压缩试验,对其冷变形特性进行了研究.利用修正的Ludwik模型对流变应力数据进行非线性拟合,获得了316L不锈钢的真应力应变模型和加工硬化模型.试验结果表明:修正的Luiwik模型能较好的反映316L不锈钢真应力与应变关系;根据流变应力的变化规律,316L不锈钢冷变形流变应力可分为三个阶段,分别为真应变小于0.02的强加工硬化阶段,真应变在0.02与0.29之间的稳加工硬化阶段,以及真应变大于0.29的弱加工硬化阶段.电子显微技术研究表明316L不锈钢三个不同的变形阶段,其加工硬化机制、微观组织特征有所不同.   相似文献   

8.
康荻娜  庞玉华  罗远  孙琦  林鹏程  刘东 《钢铁》2020,55(9):104-110
为了建立可以满足计算精度的F45MnVS钢高温塑性变形本构关系模型,利用Gleeble-3500试验机完成了热模拟等温压缩试验,获得了变形温度为800~1 000℃、应变速率为0.01~10s-1、变形量为0~70%时的金属流变行为。结果表明,应力随应变的变化具有明显动态再结晶特征,应力随变形温度的降低、应变速率的增加而增大;基于对Arrhenius方程和Zener-Hollomon参数的解析,获得了热变形激活能Q,建立了峰值应力本构模型;基于应力-位错关系和动态再结晶动力学,建立了加工硬化-动态回复和动态再结晶两个阶段的机理型本构模型,用于描述不同变形温度和应变速率时应力与应变之间的关系;采用所建模型完成了不同变形条件的应力应变预测,与试验结果的对比分析表明,相关系数为0.997,吻合度高。  相似文献   

9.
SUS304奥氏体不锈钢经不同的轧制变形后,对其组织、性能及马氏体相变进行了分析。结果表明:随着变形量的增大,加工硬化增强,纤维组织变得尤为明显,变形后其组织中马氏体含量不断增多。通过分析,其产生的原因为随着变形量的增大,位错不断增殖、形变孪晶不断增加,形变孪晶与位错间的交互作用导致位错运动受阻,从而使流变应力不断的增加,使材料的自由能增大,促成了马氏体相变过程中的形核,发生马氏体相变,随着应变的累积α'马氏体量持续的增加,α'马氏体量的增加使材料的强度增加。  相似文献   

10.
采用Gleeble-3500热模拟实验机对Cu-Cr-Zr合金进行了压缩变形实验,分析了在变形温度为25~700℃、应变速率为0.0001~0.1000s-1的条件下流变应力的变化规律,利用扫描电镜及透射电镜分析合金在热压缩过程中的组织演变及动态再结晶机制。结果表明:Cu-Cr-Zr合金在热变形过程中发生了动态再结晶,且变形温度和应变速率均对流变应力有显著的影响,流变应力随着变形温度的升高而降低,随着应变速率的增加而升高,说明该合金属于正应变速率敏感材料;当变形温度为400~500℃时,低应变速率(0.0001~0.0010 s-1)的真应力-真应变曲线呈现动态再结晶曲线特征,高应变速率(0.01~0.10 s-1)的真应力-真应变曲线呈现动态回复特征;在真应力-真应变曲线的基础上,采用双曲正弦模型能较好地描述Cu-Cr-Zr合金高温变形时的流变行为,建立了完整描述合金热变形过程中流变应力与应变速率和变形温度关系的本构方程,确定了合金的变形激活能为311.43 kJ·mol-1。  相似文献   

11.
Due to the complex coupling of twinning-induced plasticity (TWIP), transformation-induced plasticity (TRIP), and dislocation glide in TWIP/TRIP steels, it is difficult as well as essential to build a comprehensive strain hardening model to describe the interactions between different deformation mechanisms (i.e., deformation twinning, martensitic transformation, and dislocation glide) and the resulted strain hardening behaviors. To address this issue, a micromechanical model is established in this paper to predict the deformation process of TWIP/TRIP steels considering both TWIP and TRIP effects. In the proposed model, the generation of deformation twinning and martensitic transformation is controlled by the stacking fault energy (SFE) of the material. In the thermodynamic calculation of SFE, deformation temperature, chemical compositions, microstrain, and temperature rise during deformation are taken into account. Varied by experimental results, the developed model can predict the stress–strain response and strain hardening behaviors of TWIP/TRIP steels precisely. In addition, the improved strength and enhanced strain hardening in Fe-Mn-C TWIP/TRIP steels due to the increased carbon content is also analyzed, which consists with literature.  相似文献   

12.
13.
The effects of changes in strain path on plastic behaviour in sheets of an interstitial-free steel with two widely different grain sizes were investigated. The sheets were prestrained in rolling and, apart from supplementary tests, they were tested in uniaxial tension at 90° to the rolling direction. The results support the following conclusions. The magnitude of the increase in reloading yield stress and amplitude of the subsequent reduction in work hardening depend on the strength of dislocation walls generated in the prestrain rather than the grain size. The walls are more effective barriers to dislocation glide in freshly activated slip systems than to glide in the original slip systems operating in the prestrain. The primary cause of the subsequent reduction in hardening rate is disruption and partial dissolution of the original dislocation substructure. The final recovery in hardening rate is caused by generation of a new substructure compatible with the new deformation mode.  相似文献   

14.
《Acta Metallurgica》1987,35(3):631-641
Macroplastic deformation results from the long-distance movement of dislocations. In singlephase crystals it implies cutting the dislocation forest traversing the slip plane of the running dislocations and, as a consequence of the non-regular distribution of the “trees”, dislocation loops are left around the harder islands in their slip planes. The dislocation length so stored represents an increment of the obstacle density already present in other non-coplanar slip systems and thus contributes to their work-hardening. This work presents quantitative results on the contribution by forest cutting in a f.c.c. metal upon flow stress and work hardening rate. It has been obtained by computer simulation of dislocation glide through a mixture of punctual and linear obstacles whose strengths reproduce approximately the strength spectrum of a f.c.c. forest as derived by Shoeck and Frydman. Simulations have been conducted for random arrays of obstacles and for more realistic spatial dislocation distributions (cells, subgrains). Both the flow stress (and its temperature and strain rate dependence) and the athermal work-hardening rate so obtained are in good agreement with those measured for f.c.c. polycrystals in experiments covering up to large strains.  相似文献   

15.
At low homologous temperature the plastic strain rate seems to be controlled largely by dislocation glide friction. However, since a sizeable fraction of the applied stress σ is dissipated in overcoming the strong barriers due to dislocation tangles generated by strain hardening, only a portion of the applied stress is actually expended against the frictional resistance. A recent model for this process, proposed by Hart, includes the role of dislocation pile-ups at the strong barriers. The pile-ups provide a mechanism for producing the internal back stress that reflects the barrier penetration stress. They also appear in the deformation as a stored anelastic strain component. The resultant behavior at low temperature and high stress is similar to that proposed by Gupta and Li. The same model also predicts an anelastic behavior at low stress. Measurements at both high and low stress levels on 316 Stainless Steel have now shown that the predictions of the model are quantitatively consistent at both stress levels.  相似文献   

16.
In an aged Ti-8.6 wt pct Al alloy macroscopic embrittlement occurs with increasing grain size and degree of age hardening. The influence of the grain sizeL on the true fracture strain can be described by εFL-1 Tensile crack nucleation is caused microscopically by strong dislocation pile-ups which crack the grain boundaries. Using transmission electron microscopy and equations from the dislocation theory, an experimental method was developed to determine quantitatively the shear stress concentrations at the grain boundaries which are produced by the dislocation pile-ups and cause crack nucleation. The experimental results show that for all investigated grain sizes and degrees of age hardening a critical local stress t* C ≈ 38 GPa leads to crack nucleation. Based on this result equations were derived which describe the combined influence of grain size and age hardening on the true fracture strain and on the true fracture stress. These equations show a good agreement with the tensile test results.  相似文献   

17.
To study the effect of tempering temperature on strain hardening exponent and flow stress curve, one kind of 1000 MPa grade low carbon bainitic steel for construction machinery was designed, and the standard uniaxial tensile tests were conducted at room temperature.A new flow stress model, which could predict the flow behavior of the tested steels at different tempering temperatures more efficient-ly, was established.The relationship between mobile dislocation density and strain hardening expo-nent was discussed based on the dislocation-stress relation.Arrhenius equation and an inverse propor-tional function were adopted to describe the mobile dislocation, and two mathematical models were established to describe the relationship between tempering temperature and strain hardening expo-nent.Nonlinear regression analysis was applied to the Arrhenius type model, hence, the activation energy was determined to be 37.6 kJ/mol.Moreover, the square of correlation coefficient was 0.985, which indicated a high reliability between the fitted curve and experimental data.By comparison with the Arrhenius type curve, the general trend of the inverse proportional fitting curve was coincided with the experimental data points except of some fitting errors.Thus, the Arrhenius type model can be adopted to predict the strain hardening exponent at different tempering temperatures.  相似文献   

18.
Hardening of polycrystalline copper subjected to tension-compression loading cycles in the plastic region is discussed with reference to changes in flow stress determined from equations describing dislocation glide. It is suggested that hardening is as a result of the accumulation of strain on a monotonic stress-strain curve. On initial loading, the behaviour is monotonic. On stress reversal, a characteristic cyclic stress-strain curve is followed until the stress reaches a value in reverse loading corresponding to the maximum attained during the preceding half cycle. Thereafter, the monotonic path is followed until strain reversal occurs at completion of the half cycle. Repetition of the process results in cyclic hardening. Steady state cyclic behaviour is reached when a stress associated with the monotonic stress-strain curve is reached which is equal to the stress associated with the cyclic stress-strain curve corresponding to the imposed strain amplitude.  相似文献   

19.
During the deformation of polycrystals, the grains break up into domains within which the selection of operative slip systems differs. The domains then subdivide into “cell blocks”. Locally, each group of cell blocks comes near to fulfilling the Taylor criterion when taken collectively, but the number of active glide systems in any one cell block is fewer than predicted. The boundaries between cell blocks and/or domains accommodate the lattice misorientations which result from glide on the different slip system combinations. They are therefore named “geometrically necessary bpundaries”. They, like all boundaries capable of accommodating variable lattice misorientations, are composed of dislocations. Microscopically, such boundaries appear as “dense dislocation walls” and “microbands”. Geometrically necessary boundaries are distinguished from ordinary dislocation cell boundaries by the absence of a change of glide systems across the latter. In materials deforming with a cell structure, ordinary dislocation cell boundaries as well as traditional “deformation bands” arise from the mutual trapping of dislocations into low-energy configurations. Such cell boundaries or walls are therefore named “incidental dislocation boundaries”. The misorientation across incidental boundaries is typically much smaller than for geometrically necessary boundaries. A further distinction is their respective on the flow stress. The average spacing of dislocation cell walls is inverse proportional to the flow stress whereas geometrically necessary boundaries obey the Hall-Petch relationship. Since they tend to occur more frequently the incidental boundaries typically control the flow stress. At increasing strain the angles between dislocation cells increase and different slip system combinations can operate in neighbouring cells. Cell walls are then no longer incidental boundaries but geometrically necessary boundaries. Such boundaries are termed “subgrain boundaries”.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号