共查询到20条相似文献,搜索用时 15 毫秒
1.
Ali Taghavi Alper Murat 《Computers & Industrial Engineering》2011,61(1):55-63
We present an efficient iterative heuristic procedure for solving the integrated layout design and product flow assignment problem. The layout design decisions involve planar location of unequal-area machines with duplicates. The product flows are assigned to machines according to the product processing routes. The integrated decision problem is a nonlinear mixed integer model which cannot be efficiently solved using classical methods for large problems. We propose a novel integrated heuristic procedure based on the alternating heuristic, a perturbation algorithm and sequential location heuristic. Since the alternating heuristic between facility layout design and product-machine assignment sub-problems terminates with local optima, we developed a perturbation algorithm based on assignment decisions. The results of an experimental study show that proposed procedure is both efficient and effective in identifying quality solutions for small to very large-sized problems. 相似文献
2.
This paper presents a new design approach used in order to solve the facility layout problem. The layout problem is viewed from the general perspective as a problem of the arrangement of elements within a system. The main attributes and relationships among the elements of the system are analyzed. 相似文献
3.
In this paper we address the problem of optimal network design for a storage area network. We consider the Core-Edge reference topology and present two formulations for the Core-Edge storage area network design problem. One formulation excludes explicit host/device connections to the edge (as is common in currently available heuristics), the other includes these connections to allow the modeling of multiple disjoint paths between hosts and devices. These formulations include generic component types to reduce the number of constraints and variables, with the properties of these components being determined as part of the solution process. The size of the formulation is further reduced by a preprocessing method that removes suboptimal switches and links from consideration. 相似文献
4.
In facility layout design, the problem of locating facilities with material flow between them was formulated as a quadratic assignment problem (QAP), so that the total cost to move the required material between the facilities is minimized, where the cost is defined by a quadratic function. In this paper, we propose a modification to iterated fast local search algorithm (IFLS) with a new recombination crossover operator and the modified IFLS is addressed as NIFLS. The ideas we incorporate in the NIFLS are iterated self-improvement with evolutionary based perturbation tool, which includes (i) recombination crossover as perturbation tool and (ii) self-improvement in mutation operation followed by a local search. Three schemes of NIFLS are proposed and the obtained solution qualities by the three schemes are compared. We test our algorithm on all the benchmark instances of QAPLIB, a well-known library of QAP instances. The performance of proposed recombination crossover with sliding mutation (RCSM) scheme of NIFLS is well superior to the other two schemes of NIFLS. 相似文献
5.
This paper presents a mixed-integer programming model for a multi-floor layout design of cellular manufacturing systems (CMSs) in a dynamic environment. A novel aspect of this model is to concurrently determine the cell formation (CF) and group layout (GL) as the interrelated decisions involved in the design of a CMS in order to achieve an optimal (or near-optimal) design solution for a multi-floor factory in a multi-period planning horizon. Other design aspects are to design a multi-floor layout to form cells in different floors, a multi-rows layout of equal area facilities in each cell, flexible reconfigurations of cells during successive periods, distance-based material handling cost, and machine depot keeping idle machines. This model incorporates with an extensive coverage of important manufacturing features used in the design of CMSs. The objective is to minimize the total costs of intra-cell, inter-cell, and inter-floor material handling, purchasing machines, machine processing, machine overhead, and machine relocation. Two numerical examples are solved by the CPLEX software to verify the performance of the presented model and illustrate the model features. Since this model belongs to NP-hard class, an efficient genetic algorithm (GA) with a matrix-based chromosome structure is proposed to derive near-optimal solutions. To verify its computational efficiency in comparison to the CPLEX software, several test problems with different sizes and settings are implemented. The efficiency of the proposed GA in terms of the objective function value and computational time is proved by the obtained results. 相似文献
6.
This paper presents a formulation of the facilities block layout problem which explicitly considers uncertainty in material handling costs on a continuous scale by use of expected values and standard deviations of product forecasts. This formulation is solved using a genetic algorithm meta-heuristic with a flexible bay construct of the departments and total facility area. It is shown that depending on the attitude of the decision-maker towards uncertainty, the optimal design can change significantly. Furthermore, designs can be optimized directly for robustness over a range of uncertainty that is pre-specified by the user. This formulation offers a computationally tractable and intuitively appealing alternative to previous stochastic layout formulations that are based on discrete scenario probabilities. 相似文献
7.
R. Kia A. Baboli N. Javadian R. Tavakkoli-Moghaddam M. Kazemi J. Khorrami 《Computers & Operations Research》2012
This paper presents a novel mixed-integer non-linear programming model for the layout design of a dynamic cellular manufacturing system (DCMS). In a dynamic environment, the product mix and part demands are varying during a multi-period planning horizon. As a result, the best cell configuration for one period may not be efficient for successive periods, and thus it necessitates reconfigurations. Three major and interrelated decisions are involved in the design of a CMS; namely cell formation (CF), group layout (GL) and group scheduling (GS). A novel aspect of this model is concurrently making the CF and GL decisions in a dynamic environment. The proposed model integrating the CF and GL decisions can be used by researchers and practitioners to design GL in practical and dynamic cell formation problems. Another compromising aspect of this model is the utilization of multi-rows layout to locate machines in the cells configured with flexible shapes. Such a DCMS model with an extensive coverage of important manufacturing features has not been proposed before and incorporates several design features including alternate process routings, operation sequence, processing time, production volume of parts, purchasing machine, duplicate machines, machine capacity, lot splitting, intra-cell layout, inter-cell layout, multi-rows layout of equal area facilities and flexible reconfiguration. The objective of the integrated model is to minimize the total costs of intra and inter-cell material handling, machine relocation, purchasing new machines, machine overhead and machine processing. Linearization procedures are used to transform the presented non-linear programming model into a linearized formulation. Two numerical examples taken from the literature are solved by the Lingo software using a branch-and-bound method to illustrate the performance of this model. An efficient simulated annealing (SA) algorithm with elaborately designed solution representation and neighborhood generation is extended to solve the proposed model because of its NP-hardness. It is then tested using several problems with different sizes and settings to verify the computational efficiency of the developed algorithm in comparison with the Lingo software. The obtained results show that the proposed SA is able to find the near-optimal solutions in computational time, approximately 100 times less than Lingo. Also, the computational results show that the proposed model to some extent overcomes common disadvantages in the existing dynamic cell formation models that have not yet considered layout problems. 相似文献
8.
This paper presents an integer programming formulation that integrates decisions concerning the layout of the resource groups on the shop floor with the design of the material handling system. The model reflects critical practical concerns, including the capacity of the material flow network and of the handling transporters, as well as the tradeoff between fixed (construction and acquisition) and variable (operational) costs. For realistic industrial cases, the size of the problem prevents the solution using explicit or implicit enumeration methods. Instead, the global model is decomposed into standard optimization problems: quadratic assignment, fixed charge capacitated network design, and non-depot distance-constrained vehicle routing. An integrated solution method, guided by a simulated annealing scheme, solves the global shop design problem. The algorithm takes advantage of the proposed decomposition and converges to a final design which is feasible with respect to all problem constraints. The method is applied to redesign the facility of a large manufacturer of radar antennas. The resulting shop configuration exhibits substantially decreased material handling effort, and requires significantly smaller investment costs compared to the existing facility. 相似文献
9.
Solving the design of distributed layout problem using forecast windows: A hybrid algorithm approach
Sai Srinivas Nageshwaraniyer Nitesh Khilwani M.K. Tiwari Ravi Shankar David Ben-Arieh 《Robotics and Computer》2013
In today’s competitive environment, manufacturing facilities have to be more responsive to the frequent changes in product mix and demand by realigning their organizational structure for minimizing material handling cost. However, manufacturing firms are reluctant to modify the layout as it leads to operation disruption and excess rearrangement cost. In this paper, we present an alternative approach for designing a multi-period layout (i.e., distributed layout) that maintains a tradeoff between re-layout cost and cost of excess material handling. Obtaining an optimal solution to distributed layout problem is generally a difficult task, owing to larger size of quadratic assignment problem. In order to overcome the aforementioned drawback, a meta-heuristic, named ‘CSO-DLP’ (Clonal Symbiotic Operated-Distributed Layout Planning) is developed for designing a distributed layout that jointly determines the arrangement of department and flow allocation among them. It inherits its trait from Symbiotic algorithm and Clonal algorithm. In addition to these; the concept of ‘forecast window’ is used, which evaluates the layout for varying number of periods at a given time. The proposed meta-heuristic is applied on a benchmark dataset and the effect of system parameters, such as rearrangement cost, department disintegration, and duplication are investigated and benchmarked in this paper. 相似文献
10.
The design of effective neighborhood search procedures is a primary issue for the performance of local search and advanced metaheuristic algorithms. Several recent studies have focused on the development of variable depth neighborhoods that generate sequences of interrelated elementary moves to create more complex compound moves. These methods are chiefly conceived to produce an adaptive search as the number of elementary moves in a compound move may vary from one iteration to another depending on the state of the search. The objective is to achieve this goal with modest computational effort. Although ejection chain methods are currently the most advanced methods in this domain, they usually require more complex implementations. The filter-and-fan (F&F) method appears as an alternative to ejection chain methods allowing for the creation of compound moves based on an effective tree search design. 相似文献
11.
A discrete event simulation model was developed and used to estimate the storage area required for a proposed overseas textile manufacturing facility. It was found that the simulation was able to achieve this because of its ability to both store attribute values and to show queuing levels at an individual product level. It was also found that the process of undertaking the simulation project initiated useful discussions regarding the operation of the facility. Discrete event simulation is shown to be much more than an exercise in quantitative analysis of results and an important task of the simulation project manager is to initiate a debate among decision makers regarding the assumptions of how the system operates. 相似文献
12.
The aim of this paper is to propose the Human Evolutionary Model (HEM) as a novel computational method for solving search and optimization problems with single or multiple objectives. HEM is an intelligent evolutionary optimization method that uses consensus knowledge from experts with the aim of inferring the most suitable parameters to achieve the evolution in an intelligent way. HEM is able to handle experts’ knowledge disagreements by the use of a novel concept called Mediative Fuzzy Logic (MFL). The effectiveness of this computational method is demonstrated through several experiments that were performed using classical test functions as well as composite test functions. We are comparing our results against the results obtained with the Genetic Algorithm of the Matlab’s Toolbox, Evolution Strategy with Covariance Matrix Adaptation (CMA-ES), Particle Swarm Optimizer (PSO), Cooperative PSO (CPSO), G3 model with PCX crossover (G3-PCX), Differential Evolution (DE), and Comprehensive Learning PSO (CLPSO). The results obtained using HEM outperforms the results obtained using the abovementioned optimization methods. 相似文献
13.
Lev Goldfarb 《Pattern recognition》1984,17(5):575-582
The paper is an outline of a new approach to pattern recognition developed by the author. A fuller introduction to the approach will appear soon.(1) Within the proposed framework the two principal approaches to pattern recognition—vector and syntactic—are unified. 相似文献
14.
Thomas E. Baker 《Computational Economics》1990,3(1):63-80
We describe a hierarchical/relational approach to math programming modeling. The approach transforms free-form generic modeling constructs into linear and nonlinear models which are independent of end-user data structures. The underlying relationships with graph-based interfaces and the inherent aggregation/disaggregation capabilities of the approach are also discussed.The modeling approach will be illustrated with several process industry applications including distribution planning, operations planning, and production scheduling. 相似文献
15.
一种新型的网络层心跳探测方案 总被引:2,自引:0,他引:2
针对路由器高可用性系统中心跳探测模块的常见问题,提出一套新型基于网络层自动调频的心跳探测方案。该方案采用双心跳线,结合动态调节探测周期的方法,并在网络层中实现。 相似文献
16.
In this paper, a shape-based block layout (SBL) approach for solving facility layout problem with unequal-areas and fixed-shapes is presented. The SBL approach employs hybrid genetic algorithm to find good solution. The existing algorithms for the problem of assigning positions to unequal-area and fixed or approximated shape departments within a given building area can produce solutions with some drawbacks, which require extensive manual revision to create practical layouts and produce irregular building shapes and too much unusable spaces. The objective function of SBL approach minimizes total material handling cost and maximizes space utilization. Experimental results show that the SBL approach is able to improve solution and it can create more practical layout than that of existing approaches. 相似文献
17.
In this paper we propose improved Benders decomposition schemes for solving a remanufacturing supply chain design problem (RSCP). We introduce a set of valid inequalities in order to improve the quality of the lower bound and also to accelerate the convergence of the classical Benders algorithm. We also derive quasi Pareto-optimal cuts for improving convergence and propose a Benders decomposition scheme to solve our RSCP problem. Computational experiments for randomly generated networks of up to 700 sourcing sites, 100 candidate sites for locating reprocessing facilities, and 50 reclamation facilities are presented. In general, according to our computational results, the Benders decomposition scheme based on the quasi Pareto-optimal cuts outperforms the classical algorithm with valid inequalities. 相似文献
18.
Fixtures are used in many manufacturing processes to hold objects. Fixture layout design is to arrange fixturing elements (fixels) on the object surface such that the object can be held in form-closure and totally immobilized. It is well known that 4/7 fixels are sufficient for immobilizing a 2D/3D object without rotational symmetry and their locations satisfy form-closure if and only if the convex hull of their primitive wrenches forms a 3D/6D simplex in the wrench space containing the origin as an interior point. This paper presents a method for finding form-closure locations of 4/7 fixels with enhanced immobilization capability. First, the Gilbert-Johnson-Keerthi distance algorithm and the Gram-Schmidt process are used to yield the fixel locations such that the simplex with vertices at their primitive wrenches is 3D/6D and contains the origin. Then, an interchange algorithm is developed for altering the fixel locations to meet form-closure and increase an immobilization capability index of fixture layouts. The meanings of this index in fixture localization accuracy and force balance capability are elucidated as well. Its value is proved to be equal to the minimum distance from the wrench origin to the facets of the wrench simplex in terms of a unit-invariant norm for wrench vectors. Without using any general optimization techniques, this method determines an optimal fixture layout very efficiently, so that it can be tried with various initial conditions to attain a result approaching the global optimum or with other good performance qualities. 相似文献
19.
Zhen Yang 《Computers & Industrial Engineering》2011,61(2):430-435
This paper studies a new variant of capacitated clustering problem (VCCP). In the VCCP, p facilities which procure a raw material from a set of suppliers are to be located among n potential sites (n > p) such that the total cost of assigning suppliers to the facilities and opening such facilities is minimized. Each supplier has a limited supply volume and each facility has a minimum supply requirement that must be satisfied by assigning enough suppliers to the facility. Each supplier can be assigned to at most one facility. When a supplier is assigned to a facility, the former will supply its all available volume to the latter. In order to solve the VCCP, a Lagrangian relaxation approach (LR) with two phases of dual optimization, the subgradient deflection in the first phase and the standard subgradient method in the second phase, is proposed. In the approach, the assignment constraints are relaxed. The resulting Lagrangian relaxed problem can be decomposed into a set of independent knapsack problems, which can be solved to optimality efficiently. At each Lagrangian iteration, a feasible solution is constructed from that of the Lagrangian relaxed problem by applying a greedy algorithm. Finally, the best feasible solution found so far is improved by a simple tabu search algorithm. Numerical tests on random instances show that the proposed LR can produce a tight lower bound and a high quality feasible solution for all instances with up to 4000 suppliers, 200 potential sites, and 100 plants to locate. 相似文献
20.
The power production system in The Netherlands is characterized by a relatively large number of thermal power-generating units, the presence of autonomous power stations, a strong national grid and a fluctuating daily load. The calculation of the most economic production policy for one or two days ahead, given all cost functions and the predicted demand for electricity, leads to a nonlinear mixed-integer optimization problem. A real solution can only be found at the expense of rather unrealistic values for computing time and memory. To cope with this problem, a hierarchical approach is described that is able to solve problems with up to 100 units and 24 periods. 相似文献