首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solid oxide fuel cell (SOFC) based micro combined heat and power (micro-CHP) systems exhibit fundamentally different characteristics from other common micro-CHP technologies. Of particular relevance to this article is that they have a low heat-to-power ratio and may benefit from avoidance of thermal cycling. Existing patterns of residential heat demand in the UK, often characterised by morning and evening heating periods, do not necessarily complement the characteristics of SOFC based micro-CHP in an economic and technical sense because of difficulties in responding to large rapid heat demands (low heat-to-power ratio) and preference for continuous operation (avoidance of thermal cycling). In order to investigate modes of heat delivery that complement SOFC based micro-CHP a number of different heat demand profiles for a typical UK residential dwelling are considered along with a detailed model of SOFC based micro-CHP technical characteristics. Economic and environmental outcomes are modelled for each heat demand profile. A thermal energy store is then added to the analysis and comment is made on changes in economic and environmental parameters, and on the constraints of this option. We find that SOFC-based micro-CHP is best suited to slow space heating demands, where the heating system is on constantly during virtually all of the winter period. Thermal energy storage is less useful where heat demands are slow, but is better suited to cases where decoupling of heat demand and heat supply can result in efficiencies.  相似文献   

2.
《Energy》2005,30(10):1759-1779
When modelling the environmental and economic aspects of meeting a given heat and power demand with a combination of combined heat and power (CHP) and grid power, it is common to use a coarse temporal precision such as 1-h demand blocks in heat and power demand data. This may be appropriate for larger applications where demand is reasonably smooth, but becomes questionable for applications where demand exhibits substantial volatility such as for a single residential dwelling—an important potential market for the commercialisation of small-scale fuel cells and other micro-CHP. Choice of temporal precision is also influenced by the relative ease in obtaining coarse data, their compatibility with available energy price data, and avoidance of computational overheads when data sets expand. The thesis of this paper is that use of such coarse temporal precision leads to averaging effects that result in misleading environmental and economic outcomes for cost-optimal micro-CHP systems. Much finer temporal precision is required to capture adequately the specific characteristics of residential energy demand and the technical qualities of solid oxide fuel cell and stirling engine micro-CHP systems. This thesis is generally supported by the results of analysis, which shows that in some cases optimal design generation capacity of the CHP system is reduced by more than half between analyses using 1-h precision and 5-min precision energy demand data. When optimal dispatch of given generator and boiler capacities is considered, the quantities of energy delivered by the various components of the energy provision system (i.e. generation from CHP, heat from CHP, heat from an additional boiler, electricity from grid) varied by up to 40% between precisions analysed. Total CO2 emissions reduction is overestimated by up to 40% by the analyses completed using coarse demand data for a given micro-CHP generator capacity. The economic difference is also significant at up to 8% of lifetime costs for a given micro-CHP generator capacity.  相似文献   

3.
It is commonly assumed that dispatch of micro-combined heat and power (micro-CHP) should be heat driven, where the unit turns on when a heat load is present, and turns off or modulates when there is little or no heat demand. However, this heat led operating strategy—typical of large-scale CHP applications—may not be economically justified as scale decreases. This article investigates cost-effective operating strategies for three micro-CHP technologies; Stirling engine, gas engine, and solid oxide fuel cell (SOFC), under reasonable estimates of energy prices. The cost of meeting a typical UK residential energy demand is calculated for hypothetical heat led and electricity led operating strategies, and compared with that of an optimal strategy. Using central estimates of price parameters, and with some thermal energy storage present in the system, it is shown that the least cost operating strategy for the three technologies is to follow heat and electricity load during winter months, rather than using either heat demand or electricity demand as the only dispatch signal. Least cost operating strategy varies between technologies in summer months. In terms of environmental outcomes, the least cost operating strategy does not always result in the lowest carbon dioxide emissions. The results obtained are sensitive to electricity buy-back rate.  相似文献   

4.
This article is concerned with development of a methodology to determine the capacity credit of micro-combined heat and power (micro-CHP), and application of the method for the UK. Capacity credit is an important parameter in electricity system planning because it measures the amount of conventional generation that would be displaced by an alternative technology. Firstly, a mathematical formulation is presented. Capacity credit is then calculated for three types of micro-CHP units—Stirling engine, internal combustion engine, and fuel cell systems—operating under various control strategies. It is found that low heat-to-power ratio fuel cell technologies achieve the highest capacity credit of approximately 85% for a 1.1 GW penetration when a heat-led control strategy is applied. Higher heat-to-power ratio Stirling engine technology achieves approximately 33% capacity credit for heat-led operation. Low heat-to-power ratio technologies achieve higher capacity credit because they are able to continue operating even when heat demand is relatively low. Capacity credit diminishes as penetration of the technology increases. Overall, the high capacity credit of micro-CHP contributes to the viewpoint that the technology can help meet a number of economic and environmental energy policy aims.  相似文献   

5.
The increasing demand for electrical power as well as energy for heating and cooling of residences and small commercial buildings is a growing worldwide concern. Micro-cooling, heating, and power (micro-CHP), typically designated as less than 30 kW electric, is decentralized electricity generation coupled with thermally activated components for residential and small commercial applications. The number of combinations of components and parameters in a micro-CHP system is too many to be designed through experimental work alone. Therefore, theoretical models for different micro-CHP components and complete micro-CHP systems are needed to facilitate the design of these systems and to study their performance. This paper presents a model for micro-CHP systems for residential and small commercial applications. Some of the results that can be obtained using the developed model include the cost per month of operation of using micro-CHP versus conventional technologies, the amount of fuel per month required to run micro-CHP systems, the overall efficiency of micro-CHP systems, etc. A case study is used to demonstrate differences in the system performances of micro-CHP systems driven by a natural gas internal combustion engine and a diesel engine. Some of the results show that both systems have similar performance and that system total efficiencies in cooler months of up to 80% could be obtained. Also, modeling results show that there is a limit in fuel price that economically prevents the use of CHP systems, which is $11 MBTU−1 for this specific case. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
严寒地区多数农村住宅建筑围护结构热损失严重,造成其采暖能耗增加,强化建筑围护结构的保温性是提高建筑采暖效率的方式之一。以位于严寒地区的安达市某传统农宅为研究对象,采用EnergyPlus对该住宅围护结构的保温性能进行研究,并分析了建筑能耗情况,获得了建筑墙体、玻璃、屋顶等围护结构部位采用保温后的节能效率。研究结果表明:安达地区节能效率较好的墙体和屋顶保温材料为XPS保温板、玻璃窗结构形式为6mm+12mm+6mmLow-E低辐射玻璃;传统农宅采用建筑保温材料后,其节能率可达72.0%,从而降低了农村住宅采暖能耗,并可维持室内良好的热环境。  相似文献   

7.
A proposed residential energy system based on the PBI (Polybenzimidazole) fuel cell technology is analyzed in terms of operational performance. Conventional operational strategies, such as heat-led and electricity-led, are applied to the simulated system to investigate their performance characteristics. Based on these findings, an improved operational strategy is formulated and applied in an attempt to minimize the shortcomings of conventional strategies. System parameters, such as electrical and thermal efficiencies, heat dumping, and import/export of electricity, are analyzed. The applied load profile is based on average data for a single-family household in Denmark and includes consumption data for electricity and heat demands. The study analyzes the potential of the proposed system on market penetration in the area of residential heat-and-power generation and whether this deployment can be justified as compared to other micro-CHP system technologies. The most important findings of this research study indicate that in comparison to non-fuel cell-based micro-CHP systems, such as Stirling Engine-based systems, the proposed system has significantly higher efficiencies. Moreover, the lower heat-to-power ratios allow the system to avoid high thermal surpluses throughout the whole annual operational profile.  相似文献   

8.
《Energy》2004,29(2):245-256
This paper analyzes modernization options for a local energy system, including both demand reduction and supply-related measures. The high-resolution optimization model deeco (dynamic energy, emission, and cost optimization) is extended by developing techniques to support conventional insulation measures, transparent insulation, and switchable transparent insulation. Supply-side technologies include gas-fired boilers, heat pumps, solar collectors, and the cogeneration of heat and electricity. Compared to common practice comprising oil-fired boilers and public grid electricity, gas-fired cogeneration is a favorable option, although sensitive to electricity tariffs. Given the current prices of fossil fuels, extensive retrofitted thermal insulation would reduce CO2-equivalent emissions by about 20% and increase overall costs by 25%.  相似文献   

9.
In Sweden, where district heating accounts for a significant share of residential heating, it has been argued that improvements in end-use energy efficiency may be counter-productive since such measures reduce the potential of energy efficient combined heat and power production. In this paper we model how the potential trade-offs between energy supply and end-use technologies depend on climate policy and energy prices. The model optimizes a combination of energy efficiency measures, technologies and fuels for heat supply and district heating extensions over a 50 year period. We ask under what circumstances improved end-use efficiency may be cost-effective in buildings connected to district heating? The answer hinges on the available technologies for electricity production. In a scenario with no alternatives to basic condensing electricity production, high CO2 prices result in very high electricity prices, high profitability of combined heat and power production, and little incentive to reduce heat demand in buildings with district heating. In contrast, in a scenario where electricity production alternatives with low CO2 emissions are available, the electricity price will level out at high CO2 prices. This gives heat prices that increase with the CO2 price and make end-use efficiency cost-effective also in buildings with district heating.  相似文献   

10.
The UK Government has unveiled an ambitious retrofit programme that seeks significant improvement to the energy efficiency of the housing stock. High quality data on the energy efficiency of buildings and their related energy demand is critical to supporting and targeting investment in energy efficiency. Using existing home improvement programmes over the past 15 years, the UK Government has brought together data on energy efficiency retrofits in approximately 13 million homes into the Homes Energy Efficiency Database (HEED), along with annual metered gas and electricity use for the period of 2004–2007.This paper describes the HEED sample and assesses its representativeness in terms of dwelling characteristics, the energy demand of different energy performance levels using linked gas and electricity meter data, along with an analysis of the impact retrofit measures has on energy demand. Energy savings are shown to be associated with the installation of loft and cavity insulation, and glazing and boiler replacement. The analysis illustrates this source of ‘in-action’ data can be used to provide empirical estimates of impacts of energy efficiency retrofit on energy demand and provides a source of empirical data from which to support the development of national housing energy efficiency retrofit policies.  相似文献   

11.
This article presents the concept and mathematical treatment for a techno-economic modelling framework designed to enable exploration of fuel cell micro combined heat and power (micro-CHP) system design and control. The aim is to provide a tool that can help to focus research and development attention on the system characteristics critical for commercial success of these technologies, present cost targets for developers, and to ensure policy makers provide appropriate instruments to support commercialisation. The model is distinctive in that it applies mixed integer unit commitment formulation to link design and control decisions for micro-CHP, and explicitly characterises stack degradation in a techno-economic framework. It is structured to provide depiction of the fuel cell stack and balance-of-plant, supplementary thermal-only system (e.g. tail gas burner), thermal energy storage, and electrical power storage. Technically, the fuel cell stack is characterised by steady-state thermal and electrical efficiencies for full and part-load operation, its nameplate capacity, minimum operating set-point, and stack degradation via performance loss rate proportional to power density and thermal cycling rate. The dynamics of operation are emulated via ramp limits, minimum up-time and minimum down-time constraints, and start-up and shutdown costs and energy consumptions. The primary performance evaluation metric adopted is the maximum additional capital cost a rational investor would pay for the fuel cell micro-CHP system over and above what they would pay for a competing conventional heating system. The companion article (Part 2) applies the developed model to consider the impact of stack degradation on economic and environmental performance.  相似文献   

12.
A model is developed that simulates nationwide energy consumption of the residential sector by considering the diversity of household and building types. Since this model can simulate the energy consumption for each household and building category by dynamic energy use based on the schedule of the occupants’ activities and a heating and cooling load calculation model, various kinds of energy-saving policies can be evaluated with considerable accuracy. In addition, the average energy efficiency of major electric appliances used in the residential sector and the percentages of housing insulation levels of existing houses is predicted by the “stock transition model.” In this paper, energy consumption and CO2 emissions in the Japanese residential sector until 2025 are predicted. For example, as a business – as-usual (BAU) case, CO2 emissions will be reduced by 7% from the 1990 level. Also evaluated are mitigation measures such as the energy efficiency standard for home electric appliances, thermal insulation code, reduction of standby power, high-efficiency water heaters, energy-efficient behavior of occupants, and dissemination of photovoltaic panels.  相似文献   

13.
The promotion of energy efficiency is seen as one of the top priorities of EU energy policy (EC, 2010). In order to design and implement effective energy policy instruments, it is necessary to have information on energy demand price and income elasticities in addition to sound indicators of energy efficiency. This research combines the approaches taken in energy demand modelling and frontier analysis in order to econometrically estimate the level of energy efficiency for the residential sector in the EU-27 member states for the period 1996 to 2009. The estimates for the energy efficiency confirm that the EU residential sector indeed holds a relatively high potential for energy savings from reduced inefficiency. Therefore, despite the common objective to decrease ‘wasteful’ energy consumption, considerable variation in energy efficiency between the EU member states is established. Furthermore, an attempt is made to evaluate the impact of energy-efficiency measures undertaken in the EU residential sector by introducing an additional set of variables into the model and the results suggest that financial incentives and energy performance standards play an important role in promoting energy efficiency improvements, whereas informative measures do not have a significant impact.  相似文献   

14.
The energy policies about energy efficiency in buildings currently focus on new buildings and on existing buildings in case of energy retrofit. However, historic and heritage buildings, that are the trademark of numerous European cities, should also deserve attention; nevertheless, their energy efficiency is nowadays not deeply investigated. In this context, this study evaluates the thermal performance of a traditional massive building situated in a Mediterranean city. Dynamic numerical simulations were carried out on a yearly basis through the software DesignBuilder, both in free-running conditions and in the presence of an air-conditioning (AC) system. The results highlight that the massive envelope of traditional residential buildings helps in maintaining small fluctuations of the indoor temperature, thus limiting the need for AC in the mid-season and in summer. This feature is highly emphasised by exploiting natural ventilation at night, which allows reducing the building energy demand for cooling by about 30%.The research also indicates that, for Mediterranean climate, the increase in thermal insulation does not always induce positive effects on the thermal performance in summer, and that it might even produce an increase in the heat loads due to the transmission through the envelope.  相似文献   

15.
Energy use in the domestic sector of Cyprus accounts for 35% of the total energy consumption. This needs to be reduced in future to meet climate change impact and fossil fuel imports. This study investigates the impact of a series of passive measures on energy consumption, namely insulation, glazing, thermal mass and orientation and prioritises their energy savings. The impact on heating and cooling energy of a range of measures is tested using a thermal simulation program (TAS), which predicts the energy consumption of two base-case dwellings, an apartment and a detached dwelling. Cost-effective prioritisation is determined from the energy savings and cost of each measure and its cost.The findings of this study suggest that fabric insulation can lead to significant energy savings, but the addition of measures above one another leads only to marginal improvements. All measures examined lead to a reduction of the overall energy consumption but the application of wall insulation and thermal mass leads to an increase of air-conditioning and dehumidification energy. Prioritisation of measures for the apartment suggests that double-glazing is the first option, 25 mm of wall insulation is the second, and 60 cm of wall thermal mass is the last option. For the detached dwelling case, prioritisation suggests that simple double-glazing should be the first option, 25 mm of wall insulation should be the second, followed by 25 mm of roof insulation and finally by 40 cm of wall thermal mass. Change of orientation can play only a minor role in the energy consumption of the detached dwelling and a slightly more significant role in the case of the apartment.  相似文献   

16.
In a joint project, the authors have investigated several possible options to reduce the heating energy demand in residential dwellings in northern climates. The single measures investigated include improved thermal insulation of walls, doors, and windows, heat recovery systems and transparent insulation (TI). The investigations were carried out using the simulation programme TRNSYS by Klein et ea. (1990) with the TI extension for the building model treated in Sick and Kummer (1992). Climate data basis are hourly irradiation and temperature values from Jyväskylä, Finland (latitude: 62.16° North). The results show that (a) even during the winter months with very few hours of sunlight per day, the irradiation gains through the TI walls can compensate the heat transmission losses to a large extent. The average night U-value of the TI wall may be twice as high as an opaque wall U-value to lead to the same heating demand in November, December, and January; (b) the efficiency of a south-facing TI facade may exceed 60% in the winter months and still reach more than 15% in July and August; and (c) seasonal shading is sufficient to prevent overheating in the summer months. An analysis of the TI behaviour is given in the paper. The economics of the TI solution are compared to conventional measures for reducing the heating energy demand. Due to the simple seasonal shading control, it will be competitive when the building is optimized for TI use and the TI material production volumes increase to a realistic extent.  相似文献   

17.
建筑形式对太阳能热利用的影响研究   总被引:1,自引:0,他引:1  
简毅文 《太阳能学报》2007,28(1):108-112
以上海地区的住宅建筑为研究对象,通过模拟分析的方法,采用DeST软件计算确定建筑逐时的采暖、空调能耗,研究分析窗墙比对建筑全年采暖能耗、全年空调能耗以及全年采暖、空调总能耗的影响规律,研究分析太阳辐射热增加所导致采暖能耗的降低幅度与外围护结构保温性能两者之间的定量关系。计算结果表示在夏季外窗遮阳和夜间通风的条件下,加大南向窗墙比可增强太阳能的热利用效率,降低建筑全年的采暖、空调总能耗;而外围护结构保温性能的增强则可降低室内向室外散热的程度,相应提高对冬季太阳辐射的热利用程度,从而达到降低采暖能耗的目的。  相似文献   

18.
This article presents a literature review regarding the mechanisms of fuel cell degradation, accompanied by the reported range of observed degradation rates in experimental, demonstration and early commercial systems. It then synthesises and exploits this information to investigate the influence of degradation on the economic and environmental credentials of fuel cell micro-combined heat and power (micro-CHP) for the UK residential sector. The investigation applies a techno-economic model developed in the companion article designed to demarcate the key characteristics of commercially successful systems. Two distinct modes of degradation are examined; one proportional to power density in the stack, and the other proportional to thermal-cycling rate of the stack. It is found that limiting the power-density related degradation rate is very important from economic and environmental viewpoints, but thermal-cycling related degradation is less important when thermal energy storage is available because cycling can be avoided. Furthermore it is noted that techno-economic studies that ignore degradation can overestimate the marginal value of a micro-CHP system with respect to the conventional alternative by up to 45% and the CO2 emissions reduction potential by up to 57%, for performance degradation rates of 2% per MWeh output. This conclusion is noteworthy because most techno-economic analyses of fuel cells ignore degradation, potentially providing misleading results. Finally it is concluded that existing commercial degradation targets, such as the SECA targets, are appropriate for achieving marketable systems.  相似文献   

19.
High efficiency cogeneration is seen by the European Commission as part of the solution to increase energy efficiency and improve security of supply in the internal energy markets. Portuguese residential sector has an estimated technical market potential of around 500 MWe for cogeneration of <150 kWe in size. Additionally, in Portugal there is a specific law for power production in low voltage, where at least 50% of the produced electric energy must be own consumed and the maximum power delivered to the power utility should be less than 150 kWe. Therefore, generic application tools cannot be applied in this regard. In this work, we develop the MicroG model for planning micro-CHP plants in agreement with the Portuguese energy legal framework. The model is able to design, evaluate and optimize from the techno-economic point of view any micro-CHP plant. MicroG appeals to some data bases, such as micro-cogeneration technologies and power consumption profiles that are also described. In addition, a practical case on a gym is considered to show all the functionalities of the model. The developed model has proven to be extremely useful from the practical point of view. This model could help the development of the micro-CHP Portuguese market, which in turns contributes to accomplish the targets of Kyoto protocol and EU cogeneration Directive. Other improvements to MicroG model can be made in order to enlarge the range of application to other micro-cogeneration technologies and to accomplish with the CO2 emissions trading.  相似文献   

20.
While energy efficiency programmes traditionally focus on energy savings, there is also a policy interest in their impact on system peak demand. Examples include demand-side management, integrated resource planning and recent developments to integrate energy efficiency into forward capacity markets. However, there is only limited research on the relationship between peak demand impacts and overall energy savings from efficiency measures, although this relationship can have important bearings on efficiency programmes. This paper reviews utility efficiency programmes in nine jurisdictions in North America and analyses how the seasonal peak-energy relationship differs between commercial and industrial (C&I) and residential sectors, among efficiency measures. In terms of the seasonal difference in peak demand impacts, these programmes show that residential lighting and residential water heating can deliver greater peak savings in weekday early evening winter peak periods. By contrast, C&I lighting and residential appliances make higher peak savings in weekday afternoon summer peak periods. A seasonal difference is more significant in lighting, especially residential lighting, than other measures. The evidence from North America also suggests that space cooling in both sectors and C&I lighting may well make greater peak savings relative to non-peak impacts than other measures during summer peak periods, while in winter peak periods, residential lighting can achieve greater peak savings relative to non-peak impacts. This review highlights the significance of regional electricity use patterns along with climatic and regulatory conditions and indicates how further research may contribute to appropriate electricity demand reduction programme design and monitoring regimes in particular regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号