共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental decision support systems (EDSS) are recognized as valuable tools for environmental planning and management. In this paper, a geographic information system (GIS)-based EDSS for the optimal planning of forest biomass use for energy production is presented. A user-friendly interface allows the creation of Scenarios and the running of the developed decision and environmental models. In particular, the optimization model regards decisions over a long-term period (e.g. years) and includes decision variables related to plant locations, conversion processes (pyrolisis, gasification, combustion), harvested biomass. Moreover, different energy products and different definitions of the harvesting and pre-treatment operations are taken into account. The correct management of the forest is considered through specific constraints, security factors, and procedures for parcel selection. The EDSS features and capabilities are described in detail, with specific reference to a case study. Discussion and further research are reported. 相似文献
2.
Energy production from biomasses can be an important resource that, when combined with other green energies such as wind power and solar plants, can contribute to reduce dependency on fossil fuels. The aim of this study is to assess how agriculture could contribute to the production of bio-energy. A multi-period Weighted Goal Programming model (MpWGP) has been applied to identify the optimal land use combinations that simultaneously maximise farmers' income and biomass energy production under three concurrent constraints: water, labour and soil availability. Alternative scenarios are considered that take into account the effect of climate change and social change. The MpWGP model was tested with data from the Rovigo county area (Italy) over a 15-year time period. 相似文献
3.
The economics of wind power with energy storage 总被引:1,自引:0,他引:1
We develop a nonlinear mathematical optimization program for investigating the economic and environmental implications of wind penetration in electrical grids and evaluating how hydropower storage could be used to offset wind power intermittence. When wind power is added to an electrical grid consisting of thermal and hydropower plants, it increases system variability and results in a need for additional peak-load, gas-fired generators. Our empirical application using load data for Alberta's electrical grid shows that costs of wind-generated electricity vary from $37 per MWh to $68/MWh, and depend primarily on the wind profiles of installed turbines. Costs of reducing CO2 emissions are estimated to be $41–$56 per t CO2. When pumped hydro storage is introduced in the system or the capacity of the water reservoirs is enhanced, the hydropower facility could provide most of the peak load requirements obviating the need to build large peak-load gas generators. 相似文献
4.
The planning of a hydrogen infrastructure with production facilities, distribution chains, and refuelling stations is a hard task. Difficulties may rise essentially in the choice of the optimal configurations. An innovative design of hydrogen network has been proposed in this paper. It consists of a network of green hydrogen refuelling stations (GHRSs) and several production nodes. The proposed model has been formulated as a mathematical programming, where the main decisions are the selection of GHRSs that are powered by the production nodes based on distance and population density criteria, as well the energy and hydrogen flows exchanged among the system components from the production nodes to the demand points. The approaches and methodologies developed can be taken as a support to decision makers, stakeholders and local authorities in the implementation of new hydrogen infrastructures. Optimal configurations have been reported taking into account the presence of an additional hydrogen industrial market demand and a connection with the electrical network. The main challenge that has been treated within the paper is the technical feasibility of the hydrogen supply chain, that is mainly driven by uncertain, but clean solar and wind energy resources. Using a Northern Italian case study, the clean hydrogen produced can be technically considered feasible to supply a network of hydrogen refuelling stations. Results show that the demands are satisfied for each time period and for the market penetration scenarios adopted. 相似文献
5.
Energy plays a vital role in socio–economic development and raising standards of human beings. Turkey is a rapidly growing country; both its population and economy are expanding each year so its energy demand increases correspondingly and this increasing demand has to be met for keeping sustainable development in the economy and raising living conditions of mankind. Although Turkey has many energy sources, it is a big energy importer. Turkey has a lot of potential to supply its own energy, which could be put to use in order to avoid this energy dependence. Additionally, Turkey is a country that has an abundance of renewable energy sources and can essentially provide all energy requirements from indigenous energy sources. Biomass is one of the most promising energy sources considered to be alternative to conventional ones. 相似文献
6.
Promoting renewable energy in India has assumed great importance in recent years in view of high growth rate of energy consumption, high share of coal in domestic energy demand, heavy dependence on imports for meeting demands for petroleum fuels and volatility of world oil market. A number of renewable energy technologies (RETs) are now well established in the country. The technology that has achieved the most dramatic growth rate and success is wind energy; India ranks fourth in the world in terms of total installed capacity. India hosts the world's largest small gasifier programme and second largest biogas programme. After many years of slow growth, demand for solar water heaters appears to be gaining momentum. Small hydro has been growing in India at a slow but steady pace. Installation of some of the technologies appears to have slowed down in recent years; these include improved cooking stoves (ICSs) and solar photovoltaic (PV) systems. In spite of many successes, the overall growth of renewable energy in India has remained rather slow. A number of factors are likely to boost the future prospects of renewable energy in the country; these include global pressure and voluntary targets for greenhouse gas emission reduction, a possible future oil crisis, intensification of rural electrification program, and import of hydropower from neighbouring countries. 相似文献
7.
William Ramsay 《Energy Policy》1985,13(4):326-329
Energy from biomass already forms an important part of the world economy, especially in the form of traditional fuels. The author explains how the resource base is very large even under present technologies and may be larger under better techniques of cultivation or through genetic engineering. Gasification of wood and the production of charcoal are two of the most promising bioenergy technologies, with the production of alcohol from sugarcane a stronger contender under present world sugar market conditions. There are particular constraints for all renewable fuels, including bioenergy — such as uncertainty in oil prices — plus the special problems of competition with agriculture and confusion of planning authority. This paper examines the present role of biomass energy, the resource base for future development, some promising energy conversion technologies and uses and a few constraints on the development of bioenergy. 相似文献
8.
Optimal energy planning models with carbon footprint constraints 总被引:1,自引:0,他引:1
This paper describes a general modeling approach for optimal planning of energy systems subject to carbon and land footprint constraints. The methodology makes use of the source–sink framework derived from the analogies with resource conservation networks used in process integration. Two variants of the modeling approach are developed for some of the important technologies for carbon emissions abatement: liquid biofuels in transportation, and carbon dioxide capture and storage in power generation. Despite the positive impact on environment, widespread use of these technologies has certain disadvantages. In case of biofuels, their production may strain agricultural resources, that are needed also for satisfying food demands. At the same time, carbon capture and storage is rather expensive technology and its practical implementation in power facilities must be carefully considered and planned. Optimum utilization of both technologies is identified with flexible and expandable mathematical modeling framework. Case studies are used to illustrate the variants of the methodology. 相似文献
9.
Power production from renewable energy resources is increasing day by day. In the case of Spain, in 2009, it represents the 26.9% of installed power and 20.1% of energy production. Wind energy has the most important contribution of this production. Wind generators are greatly affected by the restrictive operating rules of electricity markets because, as wind is naturally variable, wind generators may have serious difficulties on submitting accurate generation schedules on a day ahead basis, and on complying with scheduled obligations. Weather forecast systems have errors in their predictions depending on wind speed. Thus, if wind energy becomes an important actor in the energy production system, these fluctuations could compromise grid stability. In this study technical and economical viability of a large scale compensation system based on hydrogen is investigated, combining wind energy production with a biomass gasification system. Combination of two systems has synergies that improve final results. In the economical study, it is considered that all hydrogen production that is not used to compensate wind energy could be sold to supply the transportation sector. 相似文献
10.
Carlos Sánchez Stefan Hübner Belén Abad David Alfonso Isidoro Segura 《International Journal of Hydrogen Energy》2012
Power production from renewable energy resources is increasing day by day. In the case of Spain, in 2009 it represented 26.9% of installed power and 20.1% of energy production. Wind energy makes the most important contribution to this production. Wind generators are greatly affected by the restrictive operating rules of electricity markets because, as wind is naturally variable, wind generators may have serious difficulties in submitting accurate generation schedules on a day-ahead basis, and in complying with scheduled obligations. Weather forecast systems have errors in their predictions depending on wind speed. Therefore, if wind energy becomes an important actor in the energy production system, these fluctuations could compromise grid stability. In the previous paper in this brief series [1], the authors showed technical results of the proposed solution, which consists of combining wind energy production with a biomass gasification system and a hydrogen generation system based on these two sources. In the present paper it is shown the economic results of the study, considering the most profitable technical configurations and three possible economic scenarios. 相似文献
11.
In several policy documents bioenergy is recognized as an important renewable energy source in Italy. The increase in energy prices represents an opportunity for lignocellulosic energy crops such as acacia and poplar. 相似文献
12.
A survey of China's renewable energy economy 总被引:1,自引:0,他引:1
This paper surveys China's renewable energy economy, focusing particularly on renewable energy laws and programs, the lessons that can be learnt from the current literature, and the implications of that literature. Gaps in the literature on China's renewable energy economy include the need for more comprehensive econometric studies. The literature may also benefit from more collaboration between renewable energy economists and agricultural economists. 相似文献
13.
This paper reports the status of Education and Training in Renewable Energy Sources (RES) in Serbia and Montenegro (SAM) at the end of May 2003. It was found that universities in SAM do not give diplomas in RES. RES subjects primarily solar and wind energy are taught at graduate levels. RES units are taught as a part of some classical engineering disciplines at undergraduate level especially in solar and biomass energy. Teaching is mainly at encyclopedic level and staff is mainly trained in general fields. This education may be regarded as unsatisfactory and should be expanded and intensified in future. 相似文献
14.
The universal provision of electricity remains far from achieved in the Brazilian Amazon, given the geographical obstacles, the dispersion of its inhabitants, the indistinctness of appropriate technologies, and the economic obstacles. Governmental action was taken in 2003 with the creation of the Light for All Program (PLpT), with the goal of bringing electricity to all rural consumers by 2010. In addition, the National Electric Power Agency, ANEEL (Agência Nacional de Energia Elétrica), which is responsible in Brazil for the electrical sector regulation, has issued a determination of compulsory access to electricity by 2015. This study describes research conducted on the Madeira River, in the Brazilian Amazon, where the electric needs of the communities and small towns along the river can be satisfied through the gasification system, using as a renewable feedstock the wood-fuel biomass deposited on the riverbed, derived from natural processes, which the Ministry of Transport is already legally obligated to remove in order to provide safe navigation along the river. The study concludes by comparing the competitiveness of this system to diesel thermoelectric plants, along with its advantages in reducing the emission of greenhouse gases. Our results should help future studies in others areas with similar phenomena. 相似文献
15.
Energy is a vital input for economic and social development of any country. With increasing industrial and agricultural activities in the country, the demand for energy is also rising. Solar, wind and biomass are accepted as dependable and widely available renewable sources of energy. Development of an energy model will help in the proper allocation of these renewables in meeting the future demand of energy in India. The present work deals with the development of an Optimal Renewable Energy Model (OREM) for the effective utilisation of renewable energy sources in India for the year-2020-21. The objective of the Optimal Renewable Energy Model (OREM) was minimising cost/efficiency ratio based on social acceptance, reliability, demand and potential constraints. The OREM model allocated renewable energy sources for different end-uses such as lighting, cooking, pumping, heating, cooling and transportation for the year 2020-21. 相似文献
16.
Meng Ni Michael K.H. LeungK. Sumathy Dennis Y.C. Leung 《International Journal of Hydrogen Energy》2006
Hong Kong is highly vulnerable to energy and economic security due to the heavy dependence on imported fossil fuels. The combustion of fossil fuels also causes serious environmental pollution. Therefore, it is important to explore the opportunities for clean renewable energy for long-term energy supply. Hong Kong has the potential to develop clean renewable hydrogen energy to improve the environmental performance. This paper reviews the recent development of hydrogen production technologies, followed by an overview of the renewable energy sources and a discussion about potential applications for renewable hydrogen production in Hong Kong. The results show that although renewable energy resources cannot entirely satisfy the energy demand in Hong Kong, solar energy, wind power, and biomass are available renewable sources for significant hydrogen production. A system consisting of wind turbines and photovoltaic (PV) panels coupled with electrolyzers is a promising design to produce hydrogen. Biomass, especially organic waste, offers an economical, environmental-friendly way for renewable hydrogen production. The achievable hydrogen energy output would be as much as 40% of the total energy consumption in transportation. 相似文献
17.
The global energy consumption is likely to grow faster than the population growth. The fuel consumption was growing from 6630 million tons of oil equivalents (Mtoe) in 1980 to 11,163 Mtoe in 2009. This projected consumption will increase 1.5% per year until 2030 and reach 16,900 Mtoe and the main drivers of this growth are mostly developing countries in Asia. Indonesia is one of the developing countries and energy supply is an important factor for all-around development. The country's energy consumption still depends on non-renewable energy such as crude oil, coal and natural gas as sources of energy. Utilization of fossil fuel continuously contributes to huge amount of greenhouse gases emission that leads to climate change. Facing such an unfavorable situation, the government of Indonesia prioritizes on energy supply securities by diversification of energy resources. The energy mixes in Indonesia based on five main resources; these are crude oil, natural gas, coal, hydropower, and renewable energy. Although the country encourages utilizing renewable energy, the contribution is only around 3%. Considering natural condition and geography, this country is blessed with great potential of renewable energy such as solar energy, wind energy, micro hydro and biomass energy. Noting the potential of renewable and sustainable energy resources in the country, the government must pay more attention on how to utilize it. Many efforts have been done to promote renewable energy such as to create energy policy and regulations, yet it still did not give any satisfactory result. Government, non-government agencies and the public should take a more proactive step to promote and use renewable energy in order to achieve the secure and environmentally sustainable energy resources. 相似文献
18.
It has been widely accepted worldwide that global warming is by far the greatest threat and challenge in the new millennium. In order to stop global warming and to promote sustainable development, renewable energy is a perfect solution to achieve both targets. Presently million hectares of land in Malaysia is occupied with oil palm plantation generating huge quantities of biomass. In this context, biomass from oil palm industries appears to be a very promising alternative as a source of raw materials including renewable energy in Malaysia. Thus, this paper aims to present current scenario of biomass in Malaysia covering issues on availability and sustainability of feedstock as well as current and possible utilization of oil palm biomass. This paper will also discuss feasibility of some biomass conversion technologies and some ongoing projects in Malaysia related to utilization of oil palm biomass as a source of renewable energy. Based on the findings presented, it is definitely clear that Malaysia has position herself in the right path to utilize biomass as a source of renewable energy and this can act as an example to other countries in the world that has huge biomass feedstock. 相似文献
19.
A model to explain and predict market-driven investment in renewable energy capital is proposed. The model is suitable for application to the biomass, wind, solar and ocean-derived energy industries. It basically assumes that, given a set of prices and a specific technology, the marginal efficiency of capital invested in these industries only depends on the productivity of the project's site and on its energy transport distance. As suggested by traditional investment theory, the model supposes that only those projects offering marginal efficiencies of capital above the current available rate of interest would be implemented, thus demarcating a region in the productivity–energy transport distance space where all the economically viable projects should lie. By relating this region to the geographic space available for development, total potential investment can be deduced. By using cash flows defined in variable energy transport distance and mean wind speed, a case study for the Chilean wind energy industry is presented. The use of the model to analyse the effect of alternative support schemes for wind energy in Chile is briefly demonstrated. It is concluded that for increasing the area economically available for the development of new wind farms, a research and development support scheme aimed at reducing investment cost of wind turbines by 25% is equivalent to a 20% price subsidy on energy. 相似文献
20.
The paper presents the results of exergy analysis for a biomass-to-synthetic natural gas (SNG) conversion process. The presented study is based on wood gasification, which is analysed for different gasification conditions like temperature and/or pressure. The analysed temperature was varied in the range from 650 to 800 °C and the pressure range was from 1 to 15 bar. The main process units of biomass-to-SNG conversion technology are gasifier, gas cleaning, synthesis gas compression, CH4 synthesis and final SNG conditioning. The results showed that the largest exergy losses take place in the biomass gasifier, CH4 synthesis part and CO2 capture unit. The overall exergetic efficiency of the biomass-to-SNG process was estimated in the range of about 69.5–71.8%. 相似文献