首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper examines the role of energy efficiency and non-economic factors such as consumers' preferences, lifestyles and values (which have hitherto been ignored) in energy demand and CO2 emissions modelling for Nigeria. We use a structural time series model to estimate various energy demand and CO2 intensity models that take account of the aforementioned factors. We adopt preferred models from these estimates to analyse how energy demand and CO2 emissions in Nigeria might evolve by generating three different future scenarios to 2025. We find energy efficiency and non-economic factors to influence energy demand and CO2 emissions. The long-run income and price elasticities obtained differ significantly from those in existing studies that have ignored these salient factors. In a business-as-usual scenario, the results indicate that energy demand will continue to grow. Consequently, present policies do not sufficiently mitigate aggregate CO2 emissions in Nigeria. The lesson for policy makers is that the extant policies introduced to restrain CO2 emissions (from a production perspective) have to be combined with new policies that influence consumers' lifestyles and behaviours, develop energy efficient technologies and apply low tariffs on imported energy efficient appliances, to drive down CO2 emissions from a consumption perspective.  相似文献   

2.
This study analyses a series of carbon dioxide (CO2) emissions abatement scenarios of the power sector in Taiwan according to the Sustainable Energy Policy Guidelines, which was released by Executive Yuan in June 2008. The MARKAL-MACRO energy model was adopted to evaluate economic impacts and optimal energy deployment for CO2 emissions reduction scenarios. This study includes analyses of life extension of nuclear power plant, the construction of new nuclear power units, commercialized timing of fossil fuel power plants with CO2 capture and storage (CCS) technology and two alternative flexible trajectories of CO2 emissions constraints. The CO2 emissions reduction target in reference reduction scenario is back to 70% of 2000 levels in 2050. The two alternative flexible scenarios, Rt4 and Rt5, are back to 70% of 2005 and 80% of 2005 levels in 2050. The results show that nuclear power plants and CCS technology will further lower the marginal cost of CO2 emissions reduction. Gross domestic product (GDP) loss rate in reference reduction scenario is 16.9% in 2050, but 8.9% and 6.4% in Rt4 and Rt5, respectively. This study shows the economic impacts in achieving Taiwan's CO2 emissions mitigation targets and reveals feasible CO2 emissions reduction strategies for the power sector.  相似文献   

3.
More than 40% of China's total CO2 emissions originate from the power industry. The realization of energy saving and emission reduction within China's power industry is therefore crucial in order to achieve CO2 emissions reduction in this country. This paper applies the autoregressive-distributed lag (ARDL) co-integration model to study the major factors which have influenced CO2 emissions within China's power industry from 1980 to 2010. Results have shown that CO2 emissions from China's power industry have been increasing rapidly. From 1980 to 2010, the average annual growth rate was 8.5%, and the average growth rate since 2002 has amounted to 10.5%. Secondly, the equipment utilization hour (as an indicator of the power demand) has the greatest influence on CO2 emissions within China's power industry. In addition, the impact of the industrial added value of the power sector on CO2 emissions is also positive from a short-term perspective. Thirdly, the Granger causality results imply that one of the important motivators behind China's technological progress, within the power industry, originates from the pressures created by a desire for CO2 emissions reduction. Finally, this paper provides policy recommendations for energy saving and emission reduction for China's power industry.  相似文献   

4.
Identifying the key influencing factors of CO2 emissions in China's iron and steel industry is vital for mitigating its emissions and formulating effective environmental protection measures. Most of the existing researches utilized time series data to investigate the driving factors of the industry's CO2 emission at the national level, but regional differences have not been given appropriate attention. This paper adopts provincial panel data from 2000 to 2013 and panel data models to examine the key driving forces of CO2 emissions at the regional levels in China. The results show that industrialization dominates the industry's CO2 emissions, but its effect varies across regions. The impact of energy efficiency on CO2 emissions in the eastern region is greater than in the central and western regions because of a huge difference in R&D investment. The influence of urbanization has significant regional differences due to the heterogeneity in human capital accumulation and real estate development. Energy structure has large potential to mitigate CO2 emissions on account of increased R&D investment in energy-saving technology and expanded clean energy use. Hence, in order to effectively achieve emission reduction, local governments should consider all these factors as well as regional heterogeneity in formulating appropriate mitigation policies.  相似文献   

5.
This article investigates the potentials of energy saving and greenhouse gases emission mitigation offered by implementation of building energy efficiency policies in China. An overview of existing literature regarding long-term energy-demand and carbon dioxide (CO2) emission forecast scenarios is presented. Energy consumption in buildings could be reduced by 100–300 million tons of oil equivalent (mtoe) in 2030 compared with the business-as-usual (BAU) scenario, which means that 600–700 million metric tons of CO2 emissions could be saved by implementing appropriate energy policies within an adapted institutional framework. The main energy-saving potentials in buildings can be achieved by improving a building's thermal performance and district heating system efficiency. The analyses also reveal that the energy interchange systems are effective especially in the early stage of penetration. Our analysis on the reviewed models suggests that more ambitious efficiency improvement policies in both supply- and demand-side as well as the carbon price should be taken into account in the policy scenarios to address drastic reduction of CO2 emission in the building sector to ensure climate security over the next decades.  相似文献   

6.
Much of China's cement industry still uses outdated kilns and other inefficient technologies, which are obstacles to improving energy efficiency. Huge improvements in energy consumption intensity can be made by improving this technology. To evaluate the potential for energy-saving and CO2 emissions reduction in China's cement industry between 2010 and 2020, a model was developed based on the Asian-Pacific Integrated Model (AIM). Three scenarios (S1, S2 and S3) were developed to describe future technology policy measures in relation to the development of the cement industry. Results show that scenario S3 would realize the potential for CO2 emissions mitigation of 361.0 million tons, accounting for 25.24% of the predicted emissions, with an additional energy saving potential of 39.0 million tons of coal equivalent by 2020. Technology promotion and industrial structure adjustment are the main measures that can lead to energy savings. Structural adjustment is the most important approach to reduce the CO2 emissions from the cement industry; the resulting potential for CO2 emissions reduction will be increasingly large, even exceeding 50% after 2016.  相似文献   

7.
Evaluating carbon dioxide emissions in international trade of China   总被引:3,自引:0,他引:3  
China is the world's largest emitter of carbon dioxide (CO2). As exports account for about one-third of China's GDP, the CO2 emissions are related to not only China's own consumption but also external demand. Using the input–output analysis (IOA), we analyze the embodied CO2 emissions of China's import and export. Our results show that about 3357 million tons CO2 emissions were embodied in the exports and the emissions avoided by imports (EAI) were 2333 million tons in 2005. The average contribution to embodied emission factors by electricity generation was over 35%. And that by cement production was about 20%. It implies that the production-based emissions of China are more than the consumption-based emissions, which is evidence that carbon leakage occurs under the current climate policies and international trade rules. In addition to the call for a new global framework to allocate emission responsibilities, China should make great efforts to improve its energy efficiency, carry out electricity pricing reforms and increase renewable energy. In particular, to use advanced technology in cement production will be helpful to China's CO2 abatement.  相似文献   

8.
The mitigation efforts of China are increasingly important for meeting global climate target since the rapid economic growth of China has led to an increasing share in the world's total CO2 emissions. This paper sets out to explore the approach for realizing China's national mitigation targets submitted to the UNFCCC as part of the Copenhagen Accord; that is, to reduce the intensity of CO2 emissions per unit of GDP by 40–45% by 2020, as well as reducing the energy intensity and increasing the share of non-fossil fuel consumption, through regional allocation of emission allowance over China's provinces. Since the realization of China's mitigation target essentially represents a total amount emission allowance allocation problem, an improved zero sum gains data envelopment analysis optimization model, which could deal with the constant total amount resources allocation, is proposed in this study. By utilizing this model and based on several scenarios of China's economic growth, CO2 emissions, and energy consumption, a new efficient emission allowance allocation scheme on provincial level for China by 2020 is proposed. The allocation results indicate that different provinces have to shoulder different mitigation burdens in terms of emission intensity reduction, energy intensity reduction, and share of non-fossil fuels increase.  相似文献   

9.
《Applied Energy》1999,63(1):53-74
Greenhouse gas emissions in Lebanon mainly come from energy activities, which are responsible for 85% of all CO2 emissions. The CO2 emissions from energy use in manufacturing industries and construction represent 24% of the total emissions of the energy sector. Lebanese manufacturers' accounted for 39.15 million gigajoules of fuel consumption for heat and power generation in 1994, including both fuel used directly and fuel burned remotely to generate electricity used in the sector. In addition to being processed by combustion, CO2 is generated in calcining of carbonates in the manufacture of cement, iron and glass. Electricity, the most expensive form of energy, represented 25.87% of all fuel used for heat and power. Residual fuel oil and diesel, which are used mainly in direct combustion processes, represent 26.85 and 26.55% of all energy use by industry, respectively. Scenarios for future energy use and CO2 emissions are developed for the industrial sector in Lebanon. The development of the baseline scenario relied on available data on major plants' outputs, and on reported amounts of fuels used by the industrial sector as a whole. Energy use in industry and the corresponding greenhouse gas (GHG) emissions for Lebanon are projected in baseline scenarios that reflect technologies, activities and practices that are likely to evolve from the base year 1994 to year 2040. Mitigation work targets a 15% of CO2 emissions from the baseline scenario by year 2005 and a 20–30% reduction of CO2 emissions by year 2040. The mitigation options selected for analysis are screened on the basis of GHG emissions and expert judgement on the viability of their wide-scale implementation and economic benefits. Using macroeconomic assessment and energy price assumptions, the final estimates of potential GHG emissions and reduction costs of various mitigation scenarios are calculated. The results show that the use of efficient electric motors, efficient boilers and furnaces with fuel switching from fuel oil to natural gas has the largest impact on GHG emissions at a levelized annual cost that ranges from −20 to −5 US$/tonne of CO2 reduced. The negative costs are indicative of direct savings obtained in energy cost for those mitigation options.  相似文献   

10.
Rapidly growing energy demand from China's transportation sector in the last two decades have raised concerns over national energy security, local air pollution, and carbon dioxide (CO2) emissions, and there is broad consensus that China's transportation sector will continue to grow in the coming decades. This paper explores the future development of China's transportation sector in terms of service demands, final energy consumption, and CO2 emissions, and their interactions with global climate policy. This study develops a detailed China transportation energy model that is nested in an integrated assessment model—Global Change Assessment Model (GCAM)—to evaluate the long-term energy consumption and CO2 emissions of China's transportation sector from a global perspective. The analysis suggests that, without major policy intervention, future transportation energy consumption and CO2 emissions will continue to rapidly increase and the transportation sector will remain heavily reliant on fossil fuels. Although carbon price policies may significantly reduce the sector's energy consumption and CO2 emissions, the associated changes in service demands and modal split will be modest, particularly in the passenger transport sector. The analysis also suggests that it is more difficult to decarbonize the transportation sector than other sectors of the economy, primarily owing to its heavy reliance on petroleum products.  相似文献   

11.
This study analyzes China’s future energy scenarios stretching until 2050 under different policy portfolios of energy security (e.g., oil import dependency) and CO2 emissions control. Four scenarios, namely, ① business as usual, ② strong oil import dependency (OID) control, ③ strong CO2 emissions control, and ④ twofold emphasis on OID and CO2 emissions control, are designed. The results reveal the existence of conflicts among China’s multiple objectives, particularly energy saving, energy security, and CO2 mitigation. Based on the analysis, an improvement in China’s efficiency in fossil energy conversion and the promotion of the utilization of non-fossil energy such as nuclear, wind, and hydro energy are recommended. The over-development of coal-derived fuels should also be avoided because of incremental coal consumption and CO2 emissions. Furthermore, research on and development of carbon capture and storage technologies should be promoted, while the energy efficiency loss caused by integrating these technologies into energy systems should be reduced in view of the high possibility of stricter standards for CO2 emissions in the future.  相似文献   

12.
This study analyzes China’s future energy scenarios stretching until 2050 under different policy portfolios of energy security (e.g., oil import dependency) and CO2 emissions control. Four scenarios, namely, ① business as usual, ② strong oil import dependency (OID) control, ③ strong CO2 emissions control, and ④ twofold emphasis on OID and CO2 emissions control, are designed. The results reveal the existence of conflicts among China’s multiple objectives, particularly energy saving, energy security, and CO2 mitigation. Based on the analysis, an improvement in China’s efficiency in fossil energy conversion and the promotion of the utilization of non-fossil energy such as nuclear, wind, and hydro energy are recommended. The over-development of coal-derived fuels should also be avoided because of incremental coal consumption and CO2 emissions. Furthermore, research on and development of carbon capture and storage technologies should be promoted, while the energy efficiency loss caused by integrating these technologies into energy systems should be reduced in view of the high possibility of stricter standards for CO2 emissions in the future.  相似文献   

13.
China announced at the Paris Climate Change Conference in 2015 that the country would reach peak carbon emissions around 2030. Since then, widespread attention has been devoted to determining when and how this goal will be achieved. This study aims to explore the role of China's changing regional development patterns in the achievement of this goal. This study uses the logarithmic mean Divisia index (LMDI) to estimate seven socioeconomic drivers of the changes in CO2 emissions in China since 2000. The results show that China's carbon emissions have plateaued since 2012 mainly because of energy efficiency gains and structural upgrades (i.e., industrial structure, energy mix and regional structure). Regional structure, measured by provincial economic growth shares, has drastically reduced CO2 emissions since 2012. The effects of these drivers on emissions changes varied across regions due to their different regional development patterns. Industrial structure and energy mix resulted in emissions growth in some regions, but these two drivers led to emissions reduction at the national level. For example, industrial structure reduced China's CO2 emissions by 1.0% from 2013 to 2016; however, it increased CO2 emissions in the Northeast and Northwest regions by 1.7% and 0.9%, respectively. Studying China's plateauing CO2 emissions in the new normal stage at the regional level yields a strong recommendation that China's regions cooperate to improve development patterns.  相似文献   

14.
This paper uses real options modeling to assess the impact of different climate change policy instruments on investment, profits and cumulative emissions in the electricity sector. Even though CO2 price caps or “safety valves” have been suggested as methods to limit uncertainty emanating from fluctuating prices of CO2 permits that would hurt the industry's profit and thereby also energy security, our analysis shows that price caps set at a too low level are detrimental to the adoption of e.g. modern biomass-fired capacity as a replacement for existing coal-fired power plants. We therefore conduct a series of experiments with different policy scenarios to analyze under which regime emissions are most effectively reduced. With respect to CO2 price uncertainty, it turns out that even for moderately rising CO2 prices, fluctuations frequently lead to investment into carbon capture and storage (CCS), while investment is often not triggered in the face of deterministic CO2 prices.  相似文献   

15.
This paper examines the causal relationships between carbon dioxide emissions, energy consumption and real economic output using panel cointegration and panel vector error correction modeling techniques based on the panel data for 28 provinces in China over the period 1995–2007. Our empirical results show that CO2 emissions, energy consumption and economic growth have appeared to be cointegrated. Moreover, there exists bidirectional causality between CO2 emissions and energy consumption, and also between energy consumption and economic growth. It has also been found that energy consumption and economic growth are the long-run causes for CO2 emissions and CO2 emissions and economic growth are the long-run causes for energy consumption. The results indicate that China's CO2 emissions will not decrease in a long period of time and reducing CO2 emissions may handicap China's economic growth to some degree. Some policy implications of the empirical results have finally been proposed.  相似文献   

16.
Chinese government proposed the target that China's CO2 emissions could peak by 2030. Under this background, this paper focused on when and how can China's CO2 emissions reach peak. By analyzing the survival data of 91 countries from 1960 to 2014, this paper adopted the survival models to explore the factors that could influence the timing of emissions peaking and predicted the conditional probability of realizing the peak of CO2 emissions. The empirical results indicated that the total-factor productivity (TFP) plays a very important role with the average marginal effect of 0.012 and 0.066 for OECD (Organization for Economic Co-operation and Development) and non-OECD countries, respectively. It was estimated that China would peak in 2030, 2028 and 2025 in three different scenarios with the probability of >50%. The probability of peaking will increase to 98% in 2037, 2034 and 2030 under the these scenarios. These findings could help policy-makers to reduce carbon emissions and achieve the CO2 emissions target.  相似文献   

17.
Although China became the world's largest CO2 emitter in 2007, the country has also taken serious actions to reduce its energy and carbon intensity. This study uses the bottom-up LBNL China End-Use Energy Model to assess the role of energy efficiency policies in transitioning China to a lower emission trajectory and meeting its 2020 intensity reduction goals. Two scenarios – Continued Improvement and Accelerated Improvement – were developed to assess the impact of actions already taken by the Chinese government as well as planned and potential actions, and to evaluate the potential for China to reduce energy demand and emissions. This scenario analysis presents an important modeling approach based in the diffusion of end-use technologies and physical drivers of energy demand and thereby help illuminate China's complex and dynamic drivers of energy consumption and implications of energy efficiency policies. The findings suggest that China's CO2 emissions will not likely continue growing throughout this century because of saturation effects in appliances, residential and commercial floor area, roadways, fertilizer use; and population peak around 2030 with slowing urban population growth. The scenarios also underscore the significant role that policy-driven efficiency improvements will play in meeting 2020 carbon mitigation goals along with a decarbonized power supply.  相似文献   

18.
This study assesses global light-duty vehicle (LDV) transport in the upcoming century, and the implications of vehicle technology advancement and fuel-switching on greenhouse gas emissions and primary energy demands. Five different vehicle technology scenarios are analyzed with and without a CO2 emissions mitigation policy using the GCAM integrated assessment model: a reference internal combustion engine vehicle scenario, an advanced internal combustion engine vehicle scenario, and three alternative fuel vehicle scenarios in which all LDVs are switched to natural gas, electricity, or hydrogen by 2050. The emissions mitigation policy is a global CO2 emissions price pathway that achieves 450 ppmv CO2 at the end of the century with reference vehicle technologies. The scenarios demonstrate considerable emissions mitigation potential from LDV technology; with and without emissions pricing, global CO2 concentrations in 2095 are reduced about 10 ppmv by advanced ICEV technologies and natural gas vehicles, and 25 ppmv by electric or hydrogen vehicles. All technological advances in vehicles are important for reducing the oil demands of LDV transport and their corresponding CO2 emissions. Among advanced and alternative vehicle technologies, electricity- and hydrogen-powered vehicles are especially valuable for reducing whole-system emissions and total primary energy.  相似文献   

19.
In the context of the world's energy crisis and environmental concerns, crop-based ethanol has emerged as an energy alternative, the use of which can help reduce oil imports as well as emissions of CO2 and other air pollutants. However, a clear disadvantage of ethanol is its high cost over gasoline under the current pricing scheme that does not include externalities. The intent of this study is to perform a life cycle analysis comparing environmental and cost performance of molasses-based E10 with those of CG. The results show that although E10 provides reduction in fossil energy use, petroleum use, CO2 and NOx emissions, its total social costs are higher than those of gasoline due to higher direct production costs and external costs for other air emissions, e.g. CH4, N2O, CO, SO2, VOC and PM10. An analysis of projection scenarios shows that technological innovations towards cleaner production help maximize ethanol's benefits whilst minimizing its limitations.  相似文献   

20.
The status and prospects of the development of Japanese nuclear power are controversial and uncertain. Many deem that nuclear power can play key roles in both supplying energy and abating CO2 emissions; however, due to severe nuclear accidents, public acceptance of nuclear power in Japan has not been fully obtained. Moreover, deregulation and liberalization of the electricity market impose pressure on large Japanese electric power companies with regard to both the operation of nuclear power plants and the development of the nuclear fuel cycle. Long-term Japanese CO2 reduction strategies up to 2100 are of environmental concern and are socially demanded under the circumstances described above. Taking these factors into account, we set the following two objectives for this study. One is to estimate lifecycle CO2 (LCCO2) emissions from Japanese nuclear power, and the other is to evaluate CO2 emissions from the Japanese electric power sector in the 21st century by quantifying the relationship between LCCO2 emissions and scenarios for the adoption of nuclear power. In the pursuit of the above objectives, we first create four scenarios of Japanese adoption of nuclear power, that range from nuclear power promotion to phase-out. Next, we formulate four scenarios describing the mix of the total electricity supply in Japan till the year 2100 corresponding to each of these nuclear power scenarios. CO2 emissions from the electric power sector in Japan till the year 2100 are estimated by summing those generated by each respective electric power technology and LCCO2 emission intensity. The LCCO2 emission intensity of nuclear power for both light water reactors (LWR) and fast breeder reactors (FBR) includes the uranium fuel production chain, facility construction/operation/decommission, and spent fuel processing/disposal. From our investigations, we conclude that the promotion of nuclear power is clearly a strong option for reducing CO2 emissions by the electric power sector. The introduction of FBR has the effect of further reducing CO2 emissions in the nuclear power sector. Meeting energy demand and reducing CO2 emissions while phasing out nuclear power appears challenging given its importance in the Japanese energy supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号