首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
设计了一个应用于超宽带(UWB)系统的3~5 GHz超宽带低噪声放大器.电路由二阶切比雪夫滤波器,电阻并联反馈,两级共源共栅结构,源级跟随器组成.低噪声放大器采用0.18 mCMOS工艺进行设计,利用ADS 2006 A进行仿真.结果表明,低噪声放大器在3~5 GHz带宽范围内噪声系数(NF)小于2dB,功率增益在23.9~24.8 dB之间,输入端口反射系数小于-10dB,输出端口反射系数小于-15dB,IIP3为-11dBm在1.8 V的电源电压下,核心电路功耗为10 mW.  相似文献   

2.
针对传统的宽带LNA普遍存在噪声系数大、芯片面积相对较大等不足,采用0.18 μm CMOS工艺设计了一种基于IEEF802.11a的全集成低噪声放大器(LNA),选用源级电感负反馈电路,实现了良好的输入匹配.调整偏置电压和MOS管的宽长比进行了噪声优化.后仿真结果表明,在5.15~5.825 GHz的频带范围内,增益S21大于16.03 dB,增益平坦度为1.51 dB,最大噪声系数和输入三阶截点分别为2.565 dB、-2.15 dBm.采用1.8V电源供电,电路总功耗约为13.29mW.  相似文献   

3.
提出一种基于改进型负反馈电路的宽带低噪声放大器.放大器芯片采用0.25 μm GaAs pHEMT工艺设计和SiP技术封装.通过调节封装内芯片外围负反馈电路实现增益平坦度优化,将低噪放工作频带拓展至0.5~2.5 GHz,可有效覆盖GSM、TD-SCDMA、WCDMA、GPS等多个应用频段.片内的稳压及温度补偿有源偏置电路可对供电电压波动及环境温度变化进行有效补偿,以适应复杂工作环境.经测试,低噪声放大器的供电电压为3.3 V,功耗为40 mW,工作频率为0.5~2.5 GHz,带宽高达5个倍频程,带内增益约为14 dB,增益平坦度≤1 dB,噪声系数≤1.3 dB,输入输出回波损耗≤-10 dB,输入三阶交调点≥1 dBm,封装后尺寸为3 mm×3 mm×1 mm.  相似文献   

4.
针对信号频段为3.1~10.6GHz的超宽带系统射频前端,提出一种基于0.13μm CMOS技术的低噪声放大器设计与实现.该放大器采用两级结构,通过第一级单端型电阻反馈和第二级单端转差分型电压缓冲器的级联设计,在获得足够的信号功率增益的同时,能够实现超宽带范围内的输入匹配.整体电路仿真结果表明:在3.1~10.6GHz的工作频段,电压增益为23.2dB,输入回波损耗小于-13dB.在6GHz时噪声系数最小值为2.4dB,最大值为2.7dB,输入三阶交调截取点(IIP3)为-11.9dBm.在1.2V电源电压下,该低噪声放大器功耗为12.2mW,芯片面积为0.32mm2.  相似文献   

5.
采用0.25 μm GaAs pHEMT E/D工艺实现了X/ Ku波段的双向真时延芯片的设计。通过在新型长号型延时结构中增加双向选择开关,实现了低插入损耗波动的双向数控可调真时延电路。其延时单元采用四阶和二阶电感耦合全通滤波器实现,单位面积下具有较高的延时量,并通过双向有源开关选择延时路径来控制延时大小。延时芯片的工作带宽为6~18 GHz,可实现3位延时,最小延时步进为15 ps,最大延时范围为106 ps。仿真结果表明,其具有相对较低的插入损耗8.1 ~ 15 dB,且损耗随时延的波动小于±2 dB。芯片尺寸为1.91 mm2,群时延均方根误差小于10 ps,回波损耗大于15 dB,直流功耗为110 mW,输入1 dB压缩点大于7 dBm。  相似文献   

6.
基于100 nm硅基氮化镓(GaN)工艺,本文设计并实现了一款工作频段为20~26 GHz且增益平坦的可变增益低噪声放大器(VGLNA).该放大器采用三级共源级级联来实现高增益,并通过调节第二、第三级的栅极偏置实现增益控制.测试结果表明,该放大器在工作频段内实现了超过20 dB的增益可变范围和±1.5 dB的增益平坦度,在增益可变范围内功耗为126 mW至413 mW.在最大增益状态下,该放大器在整个频段内可实现大于20 dB的小信号增益且噪声系数(NF)为2.95 dB至3.5 dB,平均输出1dB压缩点(OP1dB)约为14.5 dBm.该芯片的面积为2 mm~2.  相似文献   

7.
设计了一种数字抽取滤波器,此滤波器由多级级联结构组成,对sigma-delta调制器的输出信号进行滤波和64倍的降采样,具有较小的电路面积和较低的功耗.采用TSMC 0.18μm CMOS工艺实现,工作电压1.8V,流片测试结果表明:sigma-delta调制器输出信号经过数字抽取滤波器后,信噪失真比(SNDR)达到了93.9 dB,满足设计要求.所提出的数字抽取滤波器-6dB带宽为640kHz,抽取后的采样频率为1.28MHz,功耗为33mW,所占面积约为0.4mm×1.7mm.  相似文献   

8.
高电源抑制比的CMOS带隙基准电压源   总被引:2,自引:0,他引:2  
介绍了一种采用0.5 μm CMOS N阱工艺制作的带隙基准电压源电路,该电路具有高电源抑制比和较低的温度系数。通过将电源电压加到运算放大器上,运算放大器的输出电压为整个核心电路提供偏置电压,整个核心电路的偏置电压独立于电源电压,使得整个带隙基准电路具有非常高的电源抑制比。基于SPECTRE的仿真结果表明,其电源抑制比可达116 dB,在-40℃~85℃温度范围内温度系数为46 ppm/℃,功耗仅为1.45 mW,可以广泛应用于模/数转换器、数/模转换器、偏置电路等集成电路模块中。  相似文献   

9.
一种宽带自偏置CMOS第二代电流传输器(CCII)电路,由轨到轨输入级、缓冲级、电流镜和偏置电路组成,其主要特点是带宽宽、低功耗、电压和电流的传输误差小.通过采用TSMC 0.18 μm CMOS工艺参数,进行HSPICE仿真,结果表明:vx/vy和iz/ix的-3 dB带宽分别为1.22 GHz和1.01 GHz,电压和电流传输增益分别为0.982和1 0049,在直流电下的静态功耗为1.9512 mW.据此电路设计的二阶通用滤波器,经仿真结果证明也是可行的.  相似文献   

10.
基于0.13μm CMOS工艺,设计13~15GHz带有分布式有源变压器的集成功率放大器。利用分布式有源变压器功率合成的特点,将其作为负载去匹配功放单元,采用共源共栅级与共源级级联的功放单元结构来提高功放单元的增益和输出功率;采用浮栅结构来减小分布式有源变压器和片上巴伦的插入损耗;功分器采用带栅格参考地的结构提高电路的性能。仿真结果表明,在13~15GHz频段,该功放的饱和输出功率为20dBm,功率附加效率为10%,功率增益为12.5dB,输出功率和功率增益有所提高,减小了插入损耗。  相似文献   

11.
为了实现波束合成器与差分馈电天线的直接连接,抑制噪声与干扰,针对传统复用网络架构的高功耗、大面积问题,提出新型差分波束合成架构. 采用差分有源延时单元代替传统架构单向通路上的无源延时单元和缓冲器,与双向通路上的差分无源延时单元结合,形成不同通路之间的固定延时差. 基于 HHNEC 0.18 μm CMOS 工艺,设计四输入四输出的波束合成器对所提架构进行验证. 仿真结果表明,在0.5~1.5 GHz带宽内,延时网络的分辨率为80 ps,最大延时值为720 ps,延时浮动均方根值为29.7 ps,电路的输出反射系数低于?23 dB,输入反射系数低于?10 dB,带内增益为18~21 dB,版图面积为2.96 mm×3.22 mm,在1.8 V电源电压下,总功耗为303 mW. 实验结果证明所提结构具有高精度、面积适中、低功耗和低复杂度的优点.  相似文献   

12.
一种低功耗CMOS并行双频低噪声放大器   总被引:2,自引:0,他引:2  
基于SMIC 0.18μm 1P6M CMOS工艺,设计实现了一种低功耗单端输入转差分输出的并行双频低噪声放大器。采用带有源级电感负反馈的共源共栅结构,在功耗限制下在双频段对输入阻抗和噪声性能同时进行优化,实现并行接收,并具有单端输入转差分输出的功能。该低噪声放大器核心电路尺寸为450μm×350μm。仿真表明,低噪声放大器(LNA)在1.227GHz和1.575GHz工作频率处的输入回波损耗分别为-11.61dB和-12dB,功率增益分别为14.67dB和12.68dB,噪声系数分别为2.3dB和2.53dB,输入l dB压缩点分别为-18.5dBm和-14.5dBm。在1.8V电源电压下,功耗仅为8.4mW,可用于航空航天领域的电子系统中。  相似文献   

13.
为了抑制移动通信基站CDM800 MHz上行频段噪声,设计了一款高抑制性能的同轴腔体带通滤波器.该滤波器采用交叉耦合结构、带外产生零点来实现带外的高抑制性能,设计过程采用HFSS和软件AWR的协同仿真.设计主要参数为:中心频率875 MHz,插入损耗0.25dB,带外抑制-80dB@825~835 MHz,回波损耗-20dB.仿真设计结果表明:设计滤波器满足指标要求.利用Matlab仿真验证了其高抑制性能的有效性.  相似文献   

14.
针对近年来快速发展的多模卫星组合导航技术需求,提出覆盖主流全球卫星导航系统(GNSS)频段(包括GPS、GLONASS、伽利略、北斗)的低噪声放大器模块.该低噪声放大器模块采用SIP封装技术,在一个3 mm×3mm×1mm的塑料封装内集成了低噪声放大器芯片及输入输出匹配电路等片外电路,封装外无需额外分立元件.低噪声放大器芯片采用低噪声的0.25μm GaAs pHEMT工艺流片.在芯片设计中,提出新型的有源偏置电路,可以抵御电源电压和环境温度的波动,使该低噪声放大器模块能够在复杂的环境中稳定工作.测试结果表明,该低噪声放大器模块在工作频段内噪声系数约为0.65dB,增益可达20dB,输入输出回波损耗小于-10dB,中心频率输入三阶互调阻断点为0.6dBm,电源电压为3.3V,功耗为15mW.  相似文献   

15.
通过对电压源传统设计中关于速度、噪声、工作温度范围方面的研究,设计了一种带隙基准电压源.基于TSMC工艺套件的电路模拟仿真表明,该电路可在1.5~1.8V电压下正常工作,功耗小于0.5 mW,输出电压为1.25V,温度系数低于1.8×10~(-5)/℃,且低频下PSRR的值可以达到-110 dB.  相似文献   

16.
基于0.18μm SiGe BiCMOS工艺,设计了一款应用于WLAN 802.11频段的低噪声放大器(LNA).采用了共射级的两级级联结构,发射极运用电感负反馈,有效地提高了增益和线性度.仿真结果表明,在5~6GHz工作频段内,小信号增益S21达20.5 dB,噪声系数NF低于2 dB,正向传输系数S11小于-19 dB和反向传输系数S22小于-18 dB,实现了较好的输入输出匹配.  相似文献   

17.
采用0.18μmCMOS工艺设计应用于802.11aWLAN的5.8GHzLNA.,给出了采用ADS的模拟结果:在中心频率5.8 G Hz处,LNA功率增益为16.97dB,阻抗匹配系数S11小于-18dB,噪声系数(NF)为2.3dBm,输入1dB压缩点为-23.33dBm.输出1dB压缩点为-7.361dBm,功耗小于15mW.  相似文献   

18.
基于TSMC 0.18μm CMOS工艺,设计一款应用于软件无线电射频收发系统的高线性度宽带可编程增益放大器。采用闭环负反馈结构,通过差分运算放大器电路以及选通无源电阻电容网络实现增益dB线性可调,添加负电容电路扩展带宽,满足高线性度要求。同时,添加具有四阶巴特沃斯滤波器的直流漂移抑制电路抑制直流偏移。仿真结果表明,该可编程增益放大器在1.8V电源电压下,工作电流为7mA,增益动态范围为-11~20dB,步长为1dB,工作带宽为0~100MHz,输出1dB压缩点为14.8dBm,噪声系数为23dB。能够满足软件无线电射频收发系统的指标需求。  相似文献   

19.
基于集成无源器件(Integrated Passive Device, IPD)技术,研制了一款工作于毫米波频段的基片集成波导(Substrate Integrated Waveguide, SIW)带通滤波器。在SIW顶层金属上加载2个对称的并联互补开口谐振环(Complementary Split-Ring Resonator, CSRR),为带通滤波器提供了良好的带外抑制效果。测试结果表明,研制的带通滤波器在3dB频带(35.8~56.6 GHz)范围内的最低插入损耗为1.07 dB,回波损耗在38.1~55.8 GHz频带内小于-10 dB,带外抑制在65.5 GHz频点达到-33.6 dB。  相似文献   

20.
为了解决传统无线局域网(WLAN)滤波器体积大和插入损耗高的问题,本文利用半模基片集成波导(HMSIW)的高通特性与缝隙的带阻特性,提出了体积小、插入损耗低以及带外抑制度高的带通滤波器.通过对HMSIW滤波器结构分析和仿真优化,结果表明:该带通滤波器其中心频率为2.445 0GHz,3dB频带宽度为0.119 6GHz.带内插入损耗优于传统WLAN带通滤波器,比传统WLAN带通滤波器的插损小了20.45%;带内回波损耗小于-26.945 8dB,比传统WLAN带通滤波器的回损提高了54%.在2.15GHz和2.733 5GHz处的带外抑制度分别达到-22.483 0dB和-31.808 3dB,尺寸仅为24mm×28mm,比传统WLAN带通滤波器的体积减小了74.99%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号