首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a CMOS two-dimensional (2-D) vector magnetic sensor system integrating two planar microfluxgate sensors and the complete electronics for sensor excitation and signal readout. The system is based on an industrial 0.8-μm double-poly, double-metal CMOS technology with ferromagnetic NiFeMo cores added in a simple postprocessing sequence. The fluxgate sensors are embedded in a ΣΔ analog-to-digital converter for a stable and precise digital detection of weak magnetic fields. A cascaded ΣΔ modulator topology is utilized to obtain second-order noise shaping and to suppress pattern noise. Within the range of ±50 μT, the system nonlinearity is less than 1.5 μT. The angular resolution as a 2D vector sensor is less than 4° for a measured magnetic induction of 50 μT. This makes the 2-D microfluxgate magnetometer suitable for use as fully integrated electronic compass  相似文献   

2.
This paper presents a second-order delta-sigma (ΔΣ) modulator fabricated in a 70 GHz (fT), 90 GHz (fmax) AlInAs-GaInAs heterojunction bipolar transistor (HBT) process on InP substrates. The modulator is a continuous time, fully differential circuit operated from ±5 volt supplies and dissipates 1 W. At a sample rate of 3.2 GHz and a signal bandwidth of 50 MHz (OSR=32100 MSPS Nyquist rate) the modulator demonstrates a Spur Free Dynamic Range (SFDR) of 71 dB (12-b dynamic range). The modulator achieves the ideal signal-to-noise ratio (SNR) of 55 dB for a second-order modulator at an oversampling ratio (OSR) of 32. The design of a digital decimation filter for this modulator is complete and the filter is currently in fabrication in the same technology. This work demonstrates the first ΔΣ modulator in III-V technology with ideal performance and provides the foundation for extending the use of ΔΣ modulator analog-to-digital converters (ADC's) to radio frequencies (RF)  相似文献   

3.
The authors present a fourth-order bandpass ΣΔ switched-current modulator IC in 0.8 μm CMOS single-poly technology. It is the first reported integrated circuit realisation of a bandpass ΣΔ modulator using switched-current circuits. Its architecture is obtained by applying a lowpass to bandpass transformation (z1→-z2) to a second-order lowpass modulator. It has been realised using fully-differential circuitry with common-mode feedback. Measurements show 8 bit dynamic range up to 5 MHz clock frequency  相似文献   

4.
The design and implementation of a very low supply voltage/low power ΔΣ modulator is presented. It is based on the switched-opamp technique, which allows low voltage operation with a standard process and without voltage multiplication. The design methodology is illustrated with a second-order single-loop ΔΣ modulator. The chip is implemented in a 0.7-μm CMOS process with standard threshold voltages. The power supply is 1.5 V and the power dissipation is only 100 μW. The measured dynamic range in the speech bandwidth of 300-3400 Hz is 12 b. The total harmonic distortion (THD) is lower than -72 dB  相似文献   

5.
Delta-sigma (ΔΣ) analog-to-digital converters (ADC's) rely on oversampling to achieve high-resolution. By applying multibit quantization to overcome stability limitations, a circuit topology with greatly reduced oversampling requirements is developed. A 14-bit 500-kHz ΔΣ ADC is described that uses an oversampling ratio of only 16. A fourth-order embedded modulator, four-bit quantizer, and self-calibrated digital-to-analog converter (DAC) are used to achieve this performance. Although the high-order embedded architecture was previously thought to be unstable, it is shown that with proper design, a robust system can be obtained. Circuit design and implementation in a 1.2-μm CMOS process are presented. Experimental results give a dynamic range of 84 dB with a sampling rate of 8 MHz and oversampling ratio of 16. This is the lowest oversampling ratio for this resolution and bandwidth achieved to date  相似文献   

6.
A quadrature bandpass ΔΣ modulator IC facilitates monolithic digital-radio-receiver design by allowing straightforward “complex A/D conversion” of an image reject mixer's I and Q, outputs. Quadrature bandpass ΔΣ modulators provide superior performance over pairs of real bandpass ΔΣ modulators in the conversion of complex input signals, using complex filtering embedded in ΔΣ loops to efficiently realize asymmetric noise-shaped spectra. The fourth-order prototype IC, clocked at 10 MHz, converts narrowband 3.75-MHz I and Q inputs and attains a dynamic range of 67 dB in 200-kHz (GSM) bandwidth, increasing to 71 and 77 dB in 100- and 30-kHz bandwidths, respectively. Maximum signal-to-noise plus distortion ratio (SNDR) in 200-kHz bandwidth is 62 dB. Power consumption is 130 mW at 5 V. Die size in a 0.8-μm CMOS process is 2.4×1.8 mm2   相似文献   

7.
A fully differential fourth-order bandpass ΔΣ modulator is presented. The circuit is targeted for a 100-MHz GSM/WCDMA-multimode IF-receiver and operates at a sampling frequency of 80 MHz. It combines frequency downconversion with analog-to-digital conversion by directly sampling an input signal from an intermediate frequency of 100 MHz to a digital intermediate frequency of 20 MHz. The modulator is based on a double-delay single-op amp switched-capacitor (SC) resonator structure which is well suited for low supply voltages. Furthermore, the center frequency of the topology is insensitive to different component nonidealities. The measured peak signal-to-noise ratio is 80 and 42 dB for 270 kHz (GSM) and 3.84-MHz (WCDMA) bandwidths, respectively. The circuit is implemented with a 0.35-μm CMOS technology and consumes 56 mW from a 3.0-V supply  相似文献   

8.
In this paper, the design of a continuous-time baseband sigma-delta (ΣΔ) modulator with an integrated mixer for intermediate-frequency (IF) analog-to-digital conversion is presented. This highly linear IF ΣΔ modulator digitizes a GSM channel at intermediate frequencies up to 50 MHz. The sampling rate is not related to the input IF and is 13.0 MHz in this design. Power consumption is 1.8 mW from a 2.5-V supply. Measured dynamic range is 82 dB, and third-order intermodulation distortion is -84 dB for two -6-dBV IF input tones. Two modulators in quadrature configuration provide 200-kHz GSM bandwidth. Active area of a single IF ΣΔ modulator is 0.2 mm2 in 0.35-μm CMOS  相似文献   

9.
The trend toward digital signal processing in communication systems has resulted in a large demand for fast accurate analog-to-digital (A/D) converters, and advances in VLSI technology have made ΔΣ modulator-based A/D converters attractive solutions. However, rigorous theoretical analyses have only been performed for the simplest ΔΣ modulator architectures. Existing analyses of more complicated ΔΣ modulators usually rely on approximations and computer simulations. In the paper, a rigorous analysis of the granular quantization noise in a general class of ΔΣ modulators is developed. Under the assumption that some input-referred circuit noise or dither is present, the second-order asymptotic statistics of the granular quantization noise sequences are determined and ergodic properties are derived  相似文献   

10.
A CMOS ΣΔ modulator for speech coding with continuous-time loopfilter is presented. Compared to switched-capacitor implementations, the relaxed bandwidth requirements of the active elements of the loopfilter reduce the power consumption. Furthermore, the need for an antialiasing filter at the modulator input is eliminated. A fourth-order, 64× oversampling ΣΔ modulator for application in portable telephones was designed and shows 80 dB dynamic range over the 300-3400 Hz voice bandwidth. Its input is directly connected to the microphone (maximum 40 mVRMS). Total harmonic distortion (THD) is below -70 dB at 95 μA current consumption from a 2.2 V supply voltage. The active die area of the modulator is 0.5 mm2 in a standard 0.5-μm CMOS process  相似文献   

11.
This paper presents a CMOS 0.8-μm switched-current (SI) fourth-order bandpass ΣΔ modulator (BP-ΣΔM) IC capable of handling signals up to 1.63 MHz with 105-bit resolution and 60-mW power consumption from a 5-V supply voltage. This modulator Is intended for direct A/D conversion of narrow-band signals within the commercial AM band, from 530 kHz to 1.6 MHz. Its architecture is obtained by applying a low-pass-to-bandpass transformation (z-1 →-z-2) to a 1-bit second-order low-pass ΣΔ modulator (LP-ΣΔM). The design of basic building blocks is based upon a detailed analysis of the influence of SI errors on the modulator performance, followed by design optimization. Memory-cell errors have been identified as the dominant ones. In order to attenuate these errors, fully differential regulated-folded cascode memory cells are employed. Measurements show a best SNR peak of 65 dB for signals of 10-kHz bandwidth and an intermediate frequency (IF) of 1.63 MHz. A correct noise-shaping filtering is achieved with a sampling frequency of up to 16 MHz  相似文献   

12.
The design of sigma-delta modulation analog-to-digital converters   总被引:2,自引:0,他引:2  
The author examines the practical design criteria for implementing oversampled analog/digital converters based on second-order sigma-delta (ΣΔ) modulation. Behavioral models that include representation of various circuit impairments are established for each of the functional building blocks comprising a second-order Σ2gD modulator. Extensive simulations based on these models are then used to establish the major design criteria for each of the building blocks. As an example, these criteria are applied to the design of a modulator that has been integrated in a 3-μm CMOS technology. An experimental prototype operates from a single 5-V supply, dissipates 12 mW, occupies an area of 0.77 mm2, and has achieved a measured dynamic range of 89 dB  相似文献   

13.
A two-channel multibit ΣΔ audio digital-to-analog converter (DAC) with on-chip digital phase-locked loop and sample-rate converter is described. The circuit requires no over-sampled synchronous clocks to operate and rejects input sample clock jitter above 16 Hz at 6 dB/octave. A second-order modulator with a multibit quantizer, switched-capacitor (SC) DAC, and single-ended second-order SC filter provides a measured out-of-band noise of -63 dBr with less than 0.1° phase nonlinearity. Measured S/(THD+N) of the DAC channel including a 0-63 dB, 1 dB/step attenuator is greater than 90 dB unweighted. The circuit is implemented in 0.6-μm DPDM CMOS, dissipating 220 mW at 5 V. Die size is 3 mm×4 mm  相似文献   

14.
A system-oriented approach for the design of a UMTS/GSM dual-standard ΔΣ modulator is presented to demonstrate the feasibility of achieving intermediate frequency (IF) around 100 MHz, high dynamic range, and low power consumption at the same time. The circuit prototype implements 78 MHz IF for GSM and 138.24 MHz for wideband code division multiple access (WCDMA), which are set to be 3/4 of the analog-to-digital converter sampling rate. A two-path IF sampling and mixing topology with a low-pass ΔΣ modulator, run at half the sampling rate, is used. Implemented in 0.25-μm CMOS, the circuit achieves dynamic range and peak signal-to-noise and distortion ratio for GSM of 86 and 72 dB, respectively. The corresponding values for WCDMA are 54 and 52 dB, respectively. Optimization is performed at all stages of design to minimize power consumption. The complete circuit consumes less than 11.5 mW for GSM and 13.5 mW for WCDMA at 2.5-V supply, of which 8 mW is due to the analog part  相似文献   

15.
A CMOS analog front-end circuit for an FDM-based ADSL system is presented. The circuit contains all analog functions including AGC amplifiers, continuous-time band pass filters, ΣΔ AD/DA converters, and digital decimation and interpolation filters. On-chip automatic tuning of the bandpass filters provides more than 300% center frequency range with 1% frequency accuracy. The higher-order ΣΔ AD/DA converters achieve 12-b data conversion at 1.54 Msamples/s with an oversampling ratio of only 32. The 0.7 μm CMOS circuit measures 65 mm2 and consumes 1.9 W from a single 5 V power supply  相似文献   

16.
It is shown that for delta-sigma (ΣΔ) frequency-to-digital conversion (FDC) there is no need for a ΣΔ modulator, since a limited FM signal itself may be considered as an asynchronous ΣΔ bit-stream. By feeding the limited FM signal directly to a sinc2 ΣΔ decimator, a triangularly weighted zero-crossing counter FDC is introduced, providing ΣΔ noise shaping. The results measured confirm the theory  相似文献   

17.
A new dynamic element matching (DEM) algorithm, referred to as rotated data weighted averaging (RDWA), is implemented in a third-order ΣΔ digital-to-analog converter (DAC) with 64× oversampling and a conversion bandwidth of 25 kHz. The systematic and random errors are considered in the design of the 14-bit converter. The ΣΔ DAC is fabricated in a 2-μm CMOS process and includes the on-chip reconstruction filter. The prototype was designed to test the performance of the DAC without DEM, with data weighted averaging (DWA), and with RDWA. The results show that the new RDWA algorithm is capable of achieving first-order noise shaping while eliminating the signal-dependent harmonic distortion present in DWA  相似文献   

18.
A monolithic 1.8-GHz ΔΣ-controlled fractional-N phase-locked loop (PLL) frequency synthesizer is implemented in a standard 0.25-μm CMOS technology. The monolithic fourth-order type-II PLL integrates the digital synthesizer part together with a fully integrated LC VCO, a high-speed prescaler, and a 35-kHz dual-path loop filter on a die of only 2×2 mm2. To investigate the influence of the ΔΣ modulator on the synthesizer's spectral purity, a fast nonlinear analysis method is developed and experimentally verified. Nonlinear mixing in the phase-frequency detector (PFD) is identified as the main source of spectral pollution in ΔΣ fractional-N synthesizers. The design of the zero-dead zone PFD and the dual charge pump is optimized toward linearity and spurious suppression. The frequency synthesizer consumes 35 mA from a single 2-V power supply. The measured phase noise is as low as -120 dBc/Hz at 600 kHz and -139 dBc/Hz at 3 MHz. The measured fractional spur level is less than -100 dBc, even for fractional frequencies close to integer multiples of the reference frequency, thereby satisfying the DCS-1800 spectral purity constraints  相似文献   

19.
A sigma-delta modulator designed as part of a complete GSM/EDGE (enhanced data rate for GSM evolution) transceiver is described. High-resolution wide-band analog-to-digital converters enable the receiver to rely on digital processing, rather than analog filtering, to extract the desired signal from blocking channels. High linearity and low power consumption are the most stringent requirements for the converters in this wireless application. A single-bit 2-2-cascaded modulator operating at 13 MHz has been adopted for high linearity and stability. Low-power low-voltage techniques have been applied along with a top-down design approach in order to minimize the power dissipation. The ΣΔ modulator achieves 13.5 bits of resolution over a bandwidth of 180 kHz while dissipating 5 mW from 1.8-V and 2.4-V supplies. The circuit has been implemented in the CMOS portion of a 0.4-μm (drawn) BiCMOS technology and occupies an active area of 0.4 mm2  相似文献   

20.
A 3.3-V bandpass ΣΔ modulator for IF sampling at 10.7 MHz in digital radio applications has been developed. The modulator presents a sixth-order single-loop architecture and features a 74-dB dynamic range in a 2OO-kHz signal bandwidth (FM signal), while for a 9-kHz signal bandwidth (AM signal) the dynamic range is 88 dB. The modulator has been integrated in a standard 0.35-μm CMOS technology using switched-capacitor technique and consumes 76 mW from a single 3.3V supply  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号