首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
王庆敏  刘应心  刘鑫 《河北冶金》2020,(4):22-26,52
借助Gleeble-2000型热力模拟实验机,研究了Q345GJC高建钢奥氏体连续冷却过程的相变规律,结合热膨胀法和金相法,分别构建实验钢奥氏体动态和静态连续冷却相变曲线(CCT),分析了加速冷却、热变形和工艺温度对实验钢相变的影响。结果表明,与静态CCT曲线比较,实验钢的动态CCT曲线整体向左上方移动,γ/α相变开始温度随冷却速度的增大而逐渐降低;高温变形对铁素体和珠光体组织转变有利,扩大了铁素体相变区,但阻碍了贝氏体相变;奥氏体变形对贝氏体转变是双重的,高冷速变形促进贝氏体相变,低冷速变形抑制贝氏体相变。  相似文献   

2.
利用Formastor-FII型膨胀仪和Gleeble-3800热模拟试验机,结合显微组织观察和硬度测试,研究了压力容器用钢17MnNiVNbR的静态和动态连续冷却转变行为,并分析了热变形对相变行为的影响。实验结果表明:冷却速率较低时,17MnNiVNbR钢的相变组织为先共析铁素体和珠光体;随着冷却速率的增加,依次出现贝氏体和马氏体。热变形能提高铁素体、珠光体和贝氏体的相变温度,并使连续冷却转变曲线向左上方移动。  相似文献   

3.
开发了0.06C-1.08Si-1.64Mn-0.30Mo-0.039Nb-0.01Ti铁素体-贝氏体微合金化(F+B)钢;用Gleeble-1500热模拟机测定了该实验钢在900℃变形50%后0.5~40 ℃/s冷却速度下的连续冷却转变曲线(CCT),并分析了形变奥氏体的相变组织.结果表明,该钢的CCT曲线分为多边形铁素体转变区和贝氏体转变区两大部分,中间被奥氏体亚稳区隔开;当冷速≤2℃/s时,钢中出现多边形铁素体,当冷速≥5℃/s时,组织主要为粒状贝氏体和板条贝氏体.  相似文献   

4.
开发了0.06C-1.08Si-1.64Mn-0.30Mo-0.039Nb-0.01Ti铁素体-贝氏体微合金化(F+B)钢;用Gleeble.1500热模拟机测定了该实验钢在900℃变形50%后0.5~40℃/s冷却速度下的连续冷却转变曲线(CCT),并分析了形变奥氏体的相变组织。结果表明,该钢的CCT曲线分为多边形铁素体转变区和贝氏体转变区两大部分,中间被奥氏体亚稳区隔开;当冷速≤2℃/s时,钢中出现多边形铁索体,当冷速≥5℃/s时,组织主要为粒状贝氏体和板条贝氏体。  相似文献   

5.
奥氏体状态对 Mn-Cr 齿轮钢连续冷却相变组织的影响   总被引:1,自引:0,他引:1  
乔兵  王秉新  刘相华 《特殊钢》2005,26(3):25-27
使用Cleeblel500热模拟试验机研究了成分(%)为:0.23C,0.74Mn,0.90Cr 齿轮钢奥氏体晶粒尺 寸和变形(真应变量0.4)对连续冷却相变组织的影响和连续转变冷却(CCT)曲线。实验结果表明,当齿轮钢 未变形时,获得完全多边形铁素体+珠光体混合组织的临界冷速为0.5~1℃/s,冷速较快时,中温相变产物 由贝氏体及针状铁素体组成;奥氏体变形时,多边形铁素体相变开始温度升高,获得完全多边形铁素体+珠光 体混合组织冷速增大,为1~2℃/s,中温相变产物没有出现贝氏体,只有针状铁素体。  相似文献   

6.
采用Gleble-1500热模拟机测定了15MnVB钢在0.05~20℃/s冷速下连续冷却转变的膨胀曲线,结合光学显微镜的微观组织观察,测绘了该钢热变形奥氏体连续冷却转变过程中的动态CCT曲线;研究了其连续冷却转变产物的组织形态和硬度。实验结果表明,15MnVB钢在0.05-20℃/s冷却速率下的组织主要由铁素体+珠光体、铁素体+珠光体+贝氏体、铁素体+珠光体+贝氏体+马氏体、贝氏体+马氏体组成。  相似文献   

7.
低碳低合金贝氏体高强度钢热变形奥氏体的连续冷却转变   总被引:3,自引:0,他引:3  
李星逸  刘文昌 《钢铁》1997,32(10):48-51
研究了一种Cr-Mn-Mo-B低碳低合金贝氏体钢热变形后奥氏体的连续冷却转变,获得了试验用钢热变形后奥氏体的连续冷却转变曲线,试验结果表明,本试验用钢不发生先共析铁素体析出的临界冷却速度为0.15℃/s冷却速度在0.15~1.00℃/s范围时可得到全部粒状贝氏体组织;随着冷却速度的降低;粒状贝氏体中的小岛尺寸增大,数目减少。  相似文献   

8.
铬对C-Si-Mn-Nb铁素体贝氏体双相钢相变规律的影响   总被引:2,自引:1,他引:1  
通过比较C-Si-Mn-Nb和C-Si-Mn-Cr-Nb两种实验钢热变形后的CCT曲线,分析了合金元素Cr对铁素体贝氏体双相钢连续冷却过程相变规律和组织演变的影响.结果表明,Cr可轻微抑制实验钢的铁索体转变,细化铁素体晶粒,但对铁素体显微硬度没有影响.在铁素体转变量很少或未转变的情况下,Cr可增强亚稳奥氏体的稳定性和淬透性,细化贝氏体产物中的铁素体板条和MA岛,提高贝氏体的显微硬度.  相似文献   

9.
通过Gleeble 3800热模拟试验机测定了该低碳微合金管线钢的静态(无热变形)和动态连续冷却相变曲线,并通过光学显微镜和电子显微镜对连续冷却后的组织进行了详细观察和分析。发现随着冷却速度的提高,在连续冷却转变组织中依次出现多边形铁素体(PF)、珠光体(P)、针状铁素体(AF)、粒状贝氏体(GB)和下贝氏体(LB)。在未再结晶区的热变形使C曲线发生左移,扩大了试样的针状铁素体区,并使得相变后的组织得到细化。  相似文献   

10.
通过热模拟试验研究了冷却速度(0.5~35℃/s)和变形量(0.3~0.6)对X100管线钢(%:0.06C、0.23Si、1.90Mn、0.005P、0.000 3S、0.28Mo、0.25 Ni、0.23Cr、0.05Nb、0.02Ti、0.20Cu、0.025Al)组织的影响,得出该钢的静态和动态连续冷却转变(CCT)曲线。结果表明,试验钢未变形奥氏体在5℃/s冷却速度可得到全部贝氏体组织;变形奥氏体相变开始温度升高,随热变形量增加,针状铁素体转变区扩大,板条贝氏体转变区缩小。  相似文献   

11.
Thermo‐mechanical simulation tests were performed on V–Ti–N microalloyed steel under three hot working conditions by using Gleeble‐3800 thermo‐mechanical simulator to study the effects of hot deformation and post‐deformation holding process on the continuous cooling transformation behaviors of overcooled austenite. The continuous cooling transformation diagrams (CCT diagrams) were determined by thermal dilation method and metallographic method. The effects of the hot deformation, post‐deformation holding, and cooling rate on the microstructure evolution were analyzed. The results show that deformation promotes ferrite and pearlite transformation. In addition, deformation leads to an increase in bainite start temperature, which becomes more markedly with the increase in cooling rate. The post‐deformation holding process is much favorable to promote carbonitride precipitation of the microalloying elements, which contributes to ferrite nucleation and smaller austenite grains. As a result, an increase in ferrite quantity and a decrease in ferrite grain size can be observed. And further more, the post‐deformation holding process reduces the effect of hot deformation on the bainite start temperature.  相似文献   

12.
Effects of deformation mode, deformation temperature, deformation rate, cooling rate and slow- cooling stop temperature on the transformation behavior of hot- rolled microalloyed TRIP steel were studied by means of MMS- 300 thermomechanical simulator. The results show that for the samples subjected to the single or double pass deformation, ferrite transformation area is expanded, pearlite transformation area appears, and martensite transformation area disappears in the continuous cooling transformation diagrams. Transformation temperatures of Ar3, Bs and Bf decrease, diffusional transformation is prevented and intermediate temperature transformation is promoted with the increase of deformation temperature or cooling rate. When deformation temperature is 850??, transformation temperatures of Ar3, Bs and Bf increase, the amount of ferrite also increases, and the amount of bainite decreases in the microstructure with the increase of deformation rate. With the decrease of slow- cooling stop temperature, ferrite amount increases, ferrite grains grow and retained austenite amount first increases and then decreases.  相似文献   

13.
 Microstructures and critical phase-transformation temperature of boron-nickel added Nb-treated high strength low alloy (HSLA) H-beams cooled at different cooling rate, with different deformation were investigated. Continuous cooling transformation (CCT) diagram of this new type of steel was obtained by using Gleeble 1500 thermomechanical simulator. Microstructures and hardness, especially micro-hardness of the experimental steel were investigated by optical microscopy (OM), scanning electron microscope (SEM), Rockwell and Vickers hardness tests. Phase analysis was also studied by X-ray diffraction (XRD). The results indicated that with increase of cooling rate, microstructures of continuous cooled specimens gradually transformed from polygonal ferrite and pearlite, grain boundary ferrite and bainite, bainite and martensite to single martensite. The CCT diagram revealed that slow cooling was needed to avoid austenite-bainite transformation to ensure toughness of this steel. By plastic deformation of 40%, austenite-ferrite transformation temperature increased by 46 ℃, due to deformation induced ferrite transformation during continuous cooling, but Rockwell hardness has little change.  相似文献   

14.
Utilizing Gleeble-1500 thermomechanical simulator, the influences of hot deformation parameters on continuous cooling bainite transformation in Nb-microalloyed low carbon steel were investigated. The results indicate that bainite starting temperature decreases with raising cooling rate and increases with increasing deformation temperature. Deformation has an accelerative effect on the bainite transformation when the specimens are deformed at 950 ℃. When the deformation temperature increases, the effect of deformation on bainite starting temperature is weakened. The amount of bainite is influenced by strain, cooling rate, and deformation temperature. When the specimens are deformed below 900 ℃, equiaxed ferrites are promoted and the bainite transformation is suppressed.  相似文献   

15.
采用热力模拟试验机、光学显微镜、显微硬度计研究了耐蚀钢12CuCrNiV在不同冷却速率下的连续冷却组织转变规律,并绘制其CCT曲线,同时研究了形变温度和冷却速度对耐蚀钢热变形后的组织和硬度的影响规律。结果表明:连续冷却转变情况下,耐腐蚀钢在冷速小于15℃/s时,有铁素体转变;冷速小于1℃/s时,有珠光体转变;冷速在0.5~20℃/s之间时,有贝氏体转变。控制冷速在5~15℃/s可得到铁素体和贝氏体复相组织。随变形温度的降低,试验钢形变过程中形变诱导铁素体相变现象显著,且伴随有M/A岛生成;随冷却速度的增高,形变诱导相变现象减弱,M/A岛数量减少。与连续冷却试验相比较,形变诱导析出现象明显,其硬度增量为40~50HV,形变可使试验钢的析出向更高冷速移动。  相似文献   

16.
通过Gleeble 3800热模拟试验机测定了该低碳微合金管线钢的静态(无热变形)和动态连续冷却相变曲线,并通过光学显微镜和电子显微镜对连续冷却后的组织进行了详细观察和分析。发现随着冷却速度的提高,在连续冷却转变组织中依次出现多边形铁素体(PF)、珠光体(P)、针状铁素体(AF)、粒状贝氏体(GB)和下贝氏体(LB)。在未再结晶区的热变形使C曲线发生左移,扩大了试样的针状铁素体区,并使得相变后的组织得到细化。  相似文献   

17.
The influence of hot deformation on the microstructure of a hot-rolled Si-Mn transformation-induced-plasticity (TRIP) steel was evaluated in an effort to better control retained austenite content. In this study, axial compressive strains varying in amounts from 0 to 60 pct were imposed in the austenite phase field, and effects on the formation of polygonal ferrite, bainite, and retained austenite were determined. In addition, modifications in simulated coiling temperature from 420 °C to 480 °C and cooling rates from the rolling temperature, between 10 °C/s and 35 °C/s, were assessed. Fast cooling rates, low coiling temperatures, and low degrees of hot deformation were generally found to decrease the amount of polygonal ferrite and increase retained austenite fraction. Unexpectedly, a sharp increase in polygonal ferrite content and decrease in retained austenite content occurred when the fastest cooling rate, 35 °C/s, was coupled with extensive hot deformation and high coiling temperatures. This effect is believed to be due to insufficient time for full recovery and recrystallization of the deformed austenite, even in the absence of intentional microalloying additions to control recrystallization kinetics. The resultant decrease in hardenability allowed the ferrite transformation to continue into the holding time at high (simulated) coiling temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号