首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation and Thr286 autophosphorylation of calcium/calmodulindependent kinase II (CaMKII) following Ca2+ influx via N-methyl-D-aspartate (NMDA)-type glutamate receptors is essential for hippocampal long term potentiation (LTP), a widely investigated cellular model of learning and memory. Here, we show that NR2B, but not NR2A or NR1, subunits of NMDA receptors are responsible for autophosphorylation-dependent targeting of CaMKII. CaMKII and NMDA receptors colocalize in neuronal dendritic spines, and a CaMKII.NMDA receptor complex can be isolated from brain extracts. Autophosphorylation induces direct high-affinity binding of CaMKII to a 50 amino acid domain in the NR2B cytoplasmic tail; little or no binding is observed to NR2A and NR1 cytoplasmic tails. Specific colocalization of CaMKII with NR2B-containing NMDA receptors in transfected cells depends on receptor activation, Ca2+ influx, and Thr286 autophosphorylation. Translocation of CaMKII because of interaction with the NMDA receptor Ca2+ channel may potentiate kinase activity and provide exquisite spatial and temporal control of postsynaptic substrate phosphorylation.  相似文献   

2.
An established senescence-accelerated model mouse strain, SAMP8, shows the deterioration of learning and memory compared with a normal control strain, SAMR1. D-Serine binds to strychnine-insensitive glycine binding sites of the N-methyl-D-aspartate (NMDA) receptor complex, and enhances glutamate binding to the receptor complex. To investigate the relationship of endogenous brain D-serine and the brain dysfunction caused by aging, the level of brain free D-serine and the D-[3H]serine binding to the brain samples were examined using the SAMP8 and SAMR1 mice. The free D-serine level was highest in the cerebral frontal and occipital cortices in both the SAMP8 and SAMR1; no difference in the D-serine level was shown between the two strains. A receptor autoradiographical analysis showed that the D-[3H]serine binding to the brain section was highest in the hippocampus, and the binding in the SAMP8 brains was lower than that of the SAMR1. The D-[3H]serine binding to the crude cerebral membranes indicated that the value of the total binding sites for the SAMP8 was lower than that for the SAMR1, whereas the value of the dissociation constant Kd for the SAMP8 was similar to that of the SAMR1. These results suggest that the number of D-[3H]serine binding sites was decreased in the SAMP8 compared to the SAMR1, but the affinity of D-[3H]serine to the binding sites was not altered. These results support the view that a decrease of NMDA receptor complex is involved in the age-related neural dysfunction of SAMP8 mice.  相似文献   

3.
The effects of aged garlic extract (AGE), chronically administered in the diet, on longevity and spatial learning performances were studied using the senescence-accelerated mouse (SAM). A solid diet containing 2% AGE was given to senescence-accelerated-prone mouse 8 (SAMP8) and senescence-accelerated-resistant mouse 1 (SAMR1) from 2 months of age. The survival ratio of SAMP8, a substrain of senescence-accelerated-prone mouse, was significantly lower than that of SAMR1, a substrain of senescence-resistant mouse. In the SAMP8, administration of AGE perfectly prevented the decrease in survival ratio. Moreover, AGE markedly improved the learning deficits of SAMP8 in the Morris water maze test. These results suggest the possibility that AGE prevents physiological aging and age-related memory disorders in human.  相似文献   

4.
The subunit compositions of the NR1 C2 exon-containing N-methyl-D-aspartate (NMDA) receptors of adult mammalian forebrain were determined by using a combination of immunoaffinity chromatography and immunoprecipitation studies with NMDA receptor subunit-specific antibodies. NMDA receptors were solubilised by sodium deoxycholate, pH 9, and purified by anti-NR1 C2 antibody affinity chromatography. The purified receptor subpopulation showed immunoreactivity with anti-NR1 C2, anti-NR1 N1, anti-NR1 C2', anti-NR2A, and anti-NR2B NMDA receptor antibodies. The NR1 C2-receptor subpopulation was subjected to immunoprecipitation using anti-NR2B antibodies and the resultant immune pellets analysed by immunoblotting where anti-NR1 C2, anti-NR1 C2', anti-NR2A, and anti-NR2B immunoreactivities were all found. Quantification of the immunoblots showed that 46% of the NR1 C2 immunoreactivity was associated with the NR2B subunit. Of this, 87% (i.e., 40% of total) were NR1 C2/NR2B receptors and 13% (6% of total) were NR1 C2/NR2A/NR2B, thus identifying the triple combination as a minor receptor subset. These results demonstrate directly, for the first time, the coexistence of the NR2A and NR2B subunits in native NMDA receptors. They show the coexistence of two splice forms of the NR1 subunit, i.e., NR1 C2 and NR1 C2', in native receptors and, in addition, they imply an NMDA receptor subpopulation containing four types of NMDA receptor subunit, NR1 C2, NR1 C2', NR2A, and NR2B, which, in accord with molecular size determinations, predicts that the NMDA receptor is at least tetrameric. These results are the first quantitative study of NMDA receptor subtypes and demonstrate molecular heterogeneity for both the NR1 and the NR2 subunits in native forebrain NMDA receptors.  相似文献   

5.
Fyn, protein tyrosine kinase, and its substrates were highly concentrated in the postsynaptic density (PSD) fraction prepared from the rat forebrain. There were a number of Fyn substrates unique to the PSD fraction. One of the major substrates in the PSD fraction was found to be a concanavalin A-binding glycoprotein, PSD-gp180, which is the N-methyl-D-aspartate (NMDA) receptor subunit epsilon 2 (NR2B). Western blotting and immunoprecipitation supported the phosphorylation of epsilon 2 by Fyn. NMDA receptor subunit epsilon 1 (NR2A) was also a substrate for Fyn. These results suggest that Fyn is involved in the modulation of synaptic efficacy through the phosphorylation of synapse-specific substrates such as the NMDA receptor/channel.  相似文献   

6.
The NMDA (N-methyl-D-aspartate) subclass of glutamate receptor is essential for the synaptic plasticity thought to underlie learning and memory and for synaptic refinement during development. It is currently believed that the NMDA receptor (NMDAR) is a heteromultimeric channel comprising the ubiquitous NR1 subunit and at least one regionally localized NR2 subunit. Here we report the characterization of a regulatory NMDAR subunit, NR3A (formerly termed NMDAR-L or chi-1), which is expressed primarily during brain development. NR3A co-immunoprecipitates with receptor subunits NR1 and NR2 in cerebrocortical extracts. In single-channel recordings from Xenopus oocytes, addition of NR3A to NR1 and NR2 leads to the appearance of a smaller unitary conductance. Genetic knockout of NR3A in mice results in enhanced NMDA responses and increased dendritic spines in early postnatal cerebrocortical neurons. These data suggest that NR3A is involved in the development of synaptic elements by modulating NMDAR activity.  相似文献   

7.
NMDA receptors play important roles in learning and memory and in sculpting neural connections during development. After the period of peak cortical plasticity, NMDA receptor-mediated EPSCs (NMDAR EPSCs) decrease in duration. A likely mechanism for this change in NMDA receptor properties is the molecular alteration of NMDA receptor structure by regulation of NMDA receptor subunit gene expression. The four modulatory NMDAR2A-D (NR2A-D) NMDA receptor subunits are known to alter NMDA receptor properties, and the expression of these subunits is regulated developmentally. It is unclear, however, how the four NR2 subunits are expressed in individual neurons and which NR2 subunits are important to the regulation of NMDA receptor properties during development in vivo. Analysis of NR2 subunit gene expression in single characterized neurons of postnatal neocortex revealed that cells expressing NR2A subunit mRNA had faster NMDAR EPSCs than cells not expressing this subunit, regardless of postnatal age. Expression of NR2A subunit mRNA in cortical neurons at even low levels seemed sufficient to alter the NMDA receptor time course. The proportion of cells expressing NR2A and displaying fast NMDAR EPSCs increased developmentally, thus providing a molecular basis for the developmental change in mean NMDAR EPSC duration.  相似文献   

8.
Senescence-Accelerated Mouse (SAM), a murine model of accelerated senescence, has been established by Takeda et al. (1981). SAM consists of senescence-accelerated-prone mouse (SAMP) and senescence-accelerated-resistant mouse (SAMR), the latter of which shows normal aging characteristics. In 1991 there were eight different substrains in the P-series, which commonly exhibited accelerated aging with a shortened life span (Takeda et al., 1991). Among the P-series, we have found that SAMP8 mice show significant impairments in a variety of learning tasks when compared with SAMR1 mice (Miyamoto et al., 1986). Further studies suggest that SAMP8 exhibits an age-related emotional disorder characterized by reduced anxiety-like behavior (Miyamoto et al., 1992). On the other hand, it has been shown that SAMP10 exhibits brain atrophy and learning impairments in an avoidance task (Shimada et al., 1992, 1993). Here, characteristics of age-related deficits in learning and memory, changes in emotional behavior, and abnormality of circadian rhythms in SAMP8 and SAMP10 mice are described. In the experiments, SAMP8/Ta (SAMP8), SAMP10/(/)Ta (SAMP10) and SAMR1TA (SAMR1) reared under specific pathogen-free conditions at Takeda Chemical Industries were used.  相似文献   

9.
A subunit-specific antibody against the N-methyl-D-aspartate (NMDA) receptor NR2D protein along with an antiphosphotyrosine antibody were employed to examine the developmental profile of the tyrosine phosphorylation of NR2D and its regulation by a protein phosphatase inhibitor in rat brain. NMDA receptor proteins from the thalamus at postnatal days 1, 7, 21, and 49 were solubilized under denaturing conditions and used in immunoprecipitations with these antibodies followed by quantitative immunoblot analysis of NR2D protein in the resulting immunopellets. The results indicate that the NR2D subunit is tyrosine phosphorylated in the brain. The quantified data examining the developmental profile of tyrosine phosphorylation of NR2D in the thalamus show that the level of tyrosine phosphorylation of NR2D protein increases five- to sixfold during development. In addition, the protein phosphatase inhibitor pervanadate (vanadyl hydroperoxide) was found to increase tyrosine phosphorylation of NR2D subunit threefold in brain slices, implying an active cycle of phosphorylation and dephosphorylation in situ. These studies demonstrate developmentally regulated tyrosine phosphorylation of NR2D protein in vivo, suggesting that tyrosine phosphorylation may be important for regulating the functions of this NMDA receptor subunit in the mammalian central nervous system.  相似文献   

10.
We have investigated the mechanism by which activation of dopamine (DA) receptors regulates the glutamate sensitivity of medium spiny neurons of the nucleus accumbens. Our results demonstrate that DA regulates the phosphorylation state of the NR1 subunit of NMDA-type glutamate receptors. The effect of DA was mimicked by SKF82526, a D1-type DA receptor agonist, and by forskolin, an activator of cAMP-dependent protein kinase (PKA), and was blocked by H-89, a PKA inhibitor. These data indicate that DA increases NR1 phosphorylation through a PKA-dependent pathway. DA-induced phosphorylation of NR1 was blocked in mice bearing a targeted deletion of the gene for dopamine- and cAMP-regulated phosphoprotein of Mr 32 kDa (DARPP-32), a phosphoprotein that is a potent and selective inhibitor of protein phosphatase-1, indicating that the effect of PKA is mediated, in part, by regulation of the DARPP-32/protein phosphatase-1 cascade. In support of this interpretation, NR1 phosphorylation was increased by calyculin A, a protein phosphatase-1/2A inhibitor. A model is proposed in which the ability of DA to regulate NMDA receptor sensitivity is attributable to a synergistic action involving increased phosphorylation and decreased dephosphorylation of the NR1 subunit of the NMDA receptor.  相似文献   

11.
The NMDA (N-methyl D-aspartate) receptors in the brain play a critical role in synaptic plasticity, synaptogenesis and excitotoxicity. Molecular cloning has demonstrated that NMDA receptors consist of several homologous subunits (NMDAR1, 2A-2D). A variety of studies have suggested that protein phosphorylation of NMDA receptors may regulate their function and play a role in many forms of synaptic plasticity such as long-term potentiation. We have examined the phosphorylation of the NMDA receptor subunit NMDAR1 (NR1) by protein kinase C (PKC) in cells transiently expressing recombinant NR1 and in primary cultures of cortical neurons. PKC phosphorylation occurs on several distinct sites on the NR1 subunit. Most of these sites are contained within a single alternatively spliced exon in the C-terminal domain, which has previously been proposed to be on the extracellular side of the membrane. These results demonstrate that alternative splicing of the NR1 messenger RNA regulates its phosphorylation by PKC, and that mRNA splicing is a novel mechanism for regulating the sensitivity of glutamate receptors to protein phosphorylation. These results also provide evidence that the C-terminal domain of the NR1 protein is located intracellularly, suggesting that the proposed transmembrane topology model for glutamate receptors may be incorrect.  相似文献   

12.
The glutamatergic transmission system plays a key role in afferent and efferent pathways involved in micturition. By in situ hybridization combined with retrograde Fast Blue labeling, expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor (GluR-A to -D) and N-methyl-D-aspartate (NMDA) receptor (NR1 and NR2A-D) subunit mRNAs were examined in visceromotor and somatomotor neurons of the rat lumbosacral spinal cord. Parasympathetic preganglionic neurons (PGNs) in the intermediolateral nucleus highly expressed GluR-A and GluR-B subunit mRNAs, with very low levels for GluR-C and GluR-D subunits. As for the NMDA receptor, PGNs were associated with abundant signals for NR1 subunit mRNA, but without any NR2 subunit mRNAs. On the other hand, somatomotor neurons in the ventral horn (dorsolateral nucleus) express all four AMPA receptor subunit mRNAs, showing relatively abundant expressions of GluR-C and GluR-D subunit mRNA compared with PGNs. In addition to high levels of NR1 subunit mRNA, dorsolateral nucleus neurons moderately expressed NR2A and NR2B subunit mRNAs. These results suggest that molecular organization of both AMPA and NMDA receptor channels are distinct between PGNs and dorsolateral nucleus neurons. Considering that native NMDA receptors are heteromeric channels composed of NR1 and NR2 subunits, it seems likely that dorsolateral nucleus neurons, not PGNs, are provided with functional NMDA receptors, which could induce activity-dependent changes in synaptic transmission in the efferent pathway for the lower urinary tract.  相似文献   

13.
Pregnenolone sulfate (PS) is an abundant neurosteroid that can potentiate or inhibit ligand gated ion channel activity and thereby alter neuronal excitability. Whereas PS is known to inhibit kainate and AMPA responses while potentiating NMDA responses, the dependence of modulation on receptor subunit composition remains to be determined. Toward this end, the effect of PS on recombinant kainate (GluR6), AMPA (GluR1 or GluR3), and NMDA (NR1(100)+NR2A) receptors was characterized electrophysiologically with respect to efficacy and potency of modulation. With Xenopus oocytes expressing GluR1, GluR3 or GluR6 receptors, PS reduces the efficacy of kainate without affecting its potency, indicative of a noncompetitive mechanism of action. Conversely, with oocytes expressing NR1(100)+NR2A subunits, PS enhances the efficacy of NMDA without affecting its potency. Whereas the modulatory efficacy, but not the potency, of PS is increased two-fold by co-injection of NR1(100)+NR2A cRNAs as compared with NR1(100) cRNA alone, there is little or no effect of the NR2A subunit on efficacy or potency of pregnanolone (or epipregnanolone) sulfate as an inhibitor of the NMDA response. This suggests that the NR2A subunit controls the efficacy of neurosteroid enhancement, but not inhibition, which is consistent with our previous finding that potentiating and inhibitory steroids act at distinct sites on the NMDA receptor. This represents a first step towards understanding the role of subunit composition in determining neurosteroid modulation of ionotropic glutamate receptor function.  相似文献   

14.
Hippocampal synapses express two distinct forms of the long-term potentiation (LTP), i.e. NMDA receptor-dependent and -independent LTPs. To understand its molecular-anatomical basis, we produced affinity-purified antibodies against the GluRepsilon1 (NR2A), GluRepsilon2 (NR2B), and GluRzeta1 (NR1) subunits of the N-methyl-D-aspartate (NMDA) receptor channel, and determined their distributions in the mouse hippocampus. Using NMDA receptor subunit-deficient mice as the specificity controls, section pretreatment with proteases (pepsin and proteinase K) was found to be very effective to detect authentic NMDA receptor subunits. As the result of modified immunohistochemistry, all three subunits were detected at the highest level in the strata oriens and radiatum of the CA1 subfield, and high levels were also seen in most other neuropil layers of the CA1 and CA3 subfields and of the dentate gyrus. However, the stratum lucidum, a mossy fibre-recipient layer of the CA3 subfield, contained low levels of the GluRepsilon1 and GluRzeta1 subunits and almost excluded the GluRepsilon2 subunit. Double immunofluorescence with the AMPA receptor GluRalpha1 (GluR1 or GluR-A) subunit further demonstrated that the GluRepsilon1 subunit was colocalized in a subset, not all, of GluRalpha1-immunopositive structures in the stratum lucidum. Therefore, the selective scarcity of these NMDA receptor subunits in the stratum lucidum suggests that a different synaptic targeting mechanism exerts within a single CA3 pyramidal neurone in vivo, which would explain contrasting significance of the NMDA receptor channel in LTP induction mechanisms between the mossy fibre-CA3 synapse and other hippocampal synapses.  相似文献   

15.
The cytotoxicity induced by the transient expression of functional N-methyl-D-aspartate (NMDA) receptors has been examined with the use of a luciferase reporter assay in Chinese hamster ovary cells. Various NMDA receptor antagonists, in a dose-dependent manner, prevented a loss of luciferase activity 24 to 48 hr post-transfection of either the NR1/NR2A or NR1/ NR2B subunit receptor configurations, likely correlating to the time required to express functionally these receptors. Both glutamate and NMDA were potently cytotoxic to transfected cells previously protected by antagonists. The novel ifenprodil analog (1S,2S)-1-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-1-propanol (CP101,606-27) protected cells expressing NR1/NR2B, but not those cells expressing either NR1/NR2A or, putatively, NR1/NR2A/NR2B. Decreased cytotoxicity was observed when a mutated NR1 subunit (N616R) with reduced Ca++ permeability was used in coexpression studies with NR2A or NR2B. In contrast to our results with NR1/NR2A or NR1/NR2B, cells expressing NR1/NR2C did not perish. Our studies suggest that expression of functional NMDA receptors in non-neuronal cells leads to a form of excitotoxicity similar to that observed in mammalian neurons in vitro.  相似文献   

16.
The expression of mRNAs encoding subunits of the N-methyl-D-aspartate (NMDA) receptor was examined in cortical neurons maintained in primary culture. Cultures were prepared from embryonic day 17 rat neocortex. At this developmental age, levels of NR1, NR2A, NR2B, and NR2C mRNA were low or undetectable. Expression of NR1 mRNA increased progressively between days 1 and 21 in vitro. The amount of NR2A mRNA did not change between days 1 and 7 but increased between days 7 and 21. In contrast, levels of NR2B mRNA increased between days 1 and 7, with little further change after day 7. The level of NR2B mRNA was approximately 4-fold higher than that of NR2A mRNA in 21-day cultures. Using ligand binding assays, the proportion of NMDA receptors having a low affinity for ifenprodil was also found to increase over time in culture. The increase in the expression of receptors having a low affinity for ifenprodil and the increase in NR1 and NR2A mRNAs were reduced or prevented by maintaining cells in medium with a low concentration of serum. The results are consistent with the hypothesis that inclusion of the NR2A subunit in native NMDA receptors is responsible for their low affinity for ifenprodil. Splice variants of NR1 lacking the 5' (amino-terminal) insert were found to be the predominant forms of NR1 in cultured neurons. Variants containing the 5' insert represented only a small (< or = 5%) fraction of total NR1 mRNA, and their proportion was not altered as a function of time in culture. Time-dependent changes in the properties of NMDA receptors and in the expression of subunit mRNA occurring in cultured neurons are similar to changes observed in developing rat brain. Thus, the developmental sequence of NMDA receptor expression that occurs in vivo is partially retained in neurons maintained in vitro.  相似文献   

17.
Evidence has accumulated to suggest that the NMDA glutamate receptor subtype plays an important role in neuronal degeneration evoked by hypoxia, ischemia, or trauma. Cerebellar granule cells in culture are vulnerable to NMDA-induced neuronal excitotoxicity. In these cells, brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor (FGF2) prevent the excitotoxic effect of NMDA. However, little is known about the molecular mechanisms underlying the protective properties of these trophic factors. Using cultured rat cerebellar granule cells, we investigated whether BDNF and FGF2 prevent NMDA toxicity by downregulating NMDA receptor function. Western blot and RNase protection analyses were used to determine the expression of the various NMDA receptor subunits (NR1, NR2A, NR2B, and NR2C) after BDNF or FGF2 treatment. FGF2 and BDNF elicited a time-dependent decrease in the expression of NR2A and NR2C subunits. Because NMDA receptor activation leads to increased intracellular Ca2+ concentration ([Ca2+]i), we studied the effect of the BDNF- and FGF2-induced reduction in NR2A and NR2C synthesis on the NMDA-evoked Ca2+ responses by single-cell fura-2 fluorescence ratio imaging. BDNF and FGF2 reduced the NMDA-mediated [Ca2+]i increase with a time dependency that correlates with their ability to decrease NR2A and NR2C subunit expression, suggesting that these trophic factors also induce a functional downregulation of the NMDA receptor. Because sustained [Ca2+]i is believed to be causally related to neuronal injury, we suggest that BDNF and FGF2 may protect cerebellar granule cells against excitotoxicity by altering the NMDA receptor-Ca2+ signaling via a downregulation of NMDA receptor subunit expression.  相似文献   

18.
The lactating rat has been shown to lack a behavioral response and immediate early gene expression (cFos) in the hippocampus (Hipc) following intravenous or intracerebroventricular administration of an N-methyl-d-aspartate (NMDA) receptor agonist. The purpose of this study is to determine whether neurons in the Hipc have an intact postsynaptic NMDA receptor system. The presence of NMDA receptor protein was determined by Western blot analysis for the NR1, NR2A, and NR2B subunits. The presence of functional NMDA receptors in the Hipc was determined by behavioral responses and the expression of cFos immunoreactivity (-ir) in response to microinjection of an NMDA receptor agonist into the hilus of the dentate gyrus. No difference in NR1 and NR2A subunit protein in the Hipc was detected between the lactating and nonlactating rats. However, there was a 26% decrease in NR2B subunit protein in this region in the lactating rat. Lactating rats receiving NMA injections displayed hyperactive behavior, similar to that observed in the nonlactating animals receiving the same treatment. The lactating rat and the nonlactating rat also displayed equivalent bilateral cFos-ir in the dentate gyrus (DG), CA1 and CA3 regions of the Hipc in response to unilateral NMA injections into the Hipc. These data indicate that the lactating rat has an intact postsynaptic NMDA receptor system. Thus, Hipc refractoriness to peripheral and third ventricular injections of an NMDA receptor agonist may reflect inhibition of presynaptic input and glutamate release.  相似文献   

19.
The present study investigated the changes in NMDA receptor subunit proteins in diazepam-withdrawn rat cerebral cortex, using Western blotting analysis. The protein levels of the NR1 and NR2B, but not NR2A, subunits were significantly increased in diazepam-withdrawn rats compared to those in control rats. Therefore, an increase in the NR1 and NR2B subunit proteins may be responsible for both the previously observed upregulation of [3H]dizocilpine binding in the cerebral cortex and the appearance of diazepam withdrawal signs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号