首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we demonstrate an SiGe HBT ultra-wideband (UWB) low-noise amplifier (LNA), achieved by a newly proposed methodology, which takes advantage of the Miller effect for UWB input impedance matching and the inductive shunt-shunt feedback technique for bandwidth extension by pole-zero cancellation. The SiGe UWB LNA dissipates 25.8-mW power and achieves S11 below -10 dB for frequencies from 3 to 14 GHz (except for a small range from 10 to 11 GHz, which is below -9 dB), flat S21 of 24.6 plusmn 1.5 dB for frequencies from 3 to 11.6 GHz, noise figure of 2.5 and 5.8 dB at 3 and 10 GHz, respectively, and good phase linearity property (group-delay variation is only plusmn28 ps across the entire band). The measured 1-dB compression point (P1 dB) and input third-order intermodulation point are -25.5 and -17 dBm, respectively, at 5.4 GHz.  相似文献   

2.
A 3.1-10.6 GHz ultra-wideband low-noise amplifier (UWB LNA) with excellent phase linearity property (group-delay variation is only plusmn 16.7 ps across the whole band) using standard 0.13 mum CMOS technology is reported. To achieve high and flat gain and small group-delay variation at the same time, the inductive peaking technique is adopted in the output stage for bandwidth enhancement. The UWB LNA achieved input return loss (S11) of -17.5 to -33.6 dB, output return loss (S22) of -14.4 to -16.3 dB, flat forward gain (S22) of 7.92 plusmn 0.23 dB, and reverse isolation (S12) of -25.8 to -41.9 dB over the 3.1-10.6 GHz band of interest. A state-of-the-art noise figure (NF) of 2.5 dB was achieved at 10.5 GHz.  相似文献   

3.
A3.1-10.6 GHz ultra-wideband low-noise amplifier (UWB LNA) with excellent phase linearity property (group-delay-variation is only plusmn17.4 ps across the whole band) using standard 0.18 mum CMOS technology is reported. To achieve high and flat gain and small group-delay-variation at the same time, the inductive peaking technique is adopted in the output stage for bandwidth enhancement. The UWB LNA dissipates 22.7 mW power and achieves input return loss (S11) of -9.7 to -19.9 dB, output return loss (S22) of-8.4 to -22.5 dB, flat forward gain (S21) 11.4 plusmn0.4 dB, reverse isolation (S12) of -40 to -48 dB, and noise figure of 4.12-5.16 dB over the 3.1-10.6 GHz band of interest. A good 1 dB compression point (Pi dB) of -7.86 dBm and an input third-order intermodulation point (IIP3) of 0.72 dBm are achieved at 6.4 GHz. The chip area is only 681 x 657 mum excluding the test pads.  相似文献   

4.
《Electronics letters》2008,44(17):1014-1016
A 21-27 GHz CMOS ultra-wideband low-noise amplifier (UWB LNA) with state-of-the-art phase linearity property (group delay variation is only ± 8.1 ps across the whole band) is reported for the first time. To achieve high and flat gain (S21) and small group delay variation at the same time, the inductive series peaking technique was adopted in the output of each stage for bandwidth enhancement. The LNA dissipated 27 mW power and achieved input return loss (S11) of 213 to 220.1 dB, output return loss (S22) of 28.2 to 230.2 dB, flat S21 of 9.3 ± 1.3 dB, reverse isolation (S12) of 252.7 to 273.3 dB, and noise figure of 4.9?6.1 dB over the 21-27 GHz band of interest. The measured 1 dB compression point (P1dB) and input third-order intermodulation point (IIP3) were 214 and 24 dBm, respectively, at 24 GHz.  相似文献   

5.
《Electronics letters》2008,44(21):1261-1262
A novel optical method for frequency upconversion in ultra-wideband (UWB) system application is proposed and demonstrated. A UWB monocycle pulse can be generated by cross-polarsation modulation combined with carrier-suppressed modulation, and after an O/E detector, it can be converted to 32 GHz band. After electrical downconversion, the UWB monocycle pulse has a fractional bandwidth of 144% and fits UWB applications.  相似文献   

6.
5G 通信中3. 4~3. 6 GHz 是主要使用频段。GaN 射频器件由于高频、低功耗、高线性度等优势,满足5G 通信应用需求。文中在高阻硅基GaN 外延片上研制了AlGaN/GaN 高电子迁移率晶体管(High Electron Mobility Transistor, HEMT),并分析了金属鄄绝缘层鄄半导体(Metal-Insulator-Semiconductor,MIS)栅对器件直流和射频特性的影响。研究发现:相比于肖特基栅结构,MIS 栅结构器件栅极泄漏电流减少2~5 个数量级,漏极驱动电流能力和跨导提高10%以上;频率为3. 5 GHz 时,增益从1. 5 dB 提升到4. 0 dB,最大资用增益从5. 2 dB 提升到11. 0 dB,电流增益截止频率为8. 3 GHz,最高振荡频率为10. 0 GHz。  相似文献   

7.
采用模拟预失真技术设计一款Ku波段预失真器,使用2个MA4E2037肖特基势垒二极管和三段无源传输线产生预失真信号,通过调节偏置电压实现幅度和相位可调;同时结合平衡式结构,改善单支路非线性器件增益扩张曲线斜率不足问题,改善输入驻波比。仿真结果表明,在14 GHz处,增益补偿和相位补偿可分别达到17 dB和60°以上;在频率12~16 GHz,增益扩张和相位扩张可达到15 dB和50°以上,整个频带内预失真器S11小于-17 dB。该预失真器适用频带宽,结构简单,功能实用。  相似文献   

8.
A novel ultra-wideband (UWB) antenna consisting of a linear tapered slot in the ground plane and a microstrip to slotline transition is investigated. The antenna possesses a wide bandwidth from 2.95?14 GHz for |S11| < - dB and shows stable radiation patterns with an average gain of 3 dBi throughout the band. Measured group delay and transmission characteristics indicate that the antenna has good pulse handling capabilities.  相似文献   

9.
Shi  B. Chia  Y.W. 《Electronics letters》2006,42(8):462-463
A low-noise amplifier (LNA) for ultra-wideband (UWB) is presented. The LNA, consisting of two gain stages in multiple feedback loops, achieves a flat power gain of a nominal 20 dB and a noise figure of 2.8-4.7 dB over the 3.1-10.6 GHz UWB band. Implemented in a 0.25 /spl mu/m SiGe BiCMOS process, the amplifier occupies 0.34 mm/sup 2/ and draws 11 mA from a 2.7 V supply.  相似文献   

10.
3.1~10.6GHz超宽带低噪声放大器的设计   总被引:1,自引:0,他引:1  
韩冰  刘瑶 《电子质量》2012,(1):34-37
基于SIMC0.18μmRFCMOS工艺技术,设计了可用于3.1—10.6GHzMB—OFDM超宽带接收机射频前端的CMOS低噪声放大器(LNA)。该LNA采用三级结构:第一级是共栅放大器,主要用来进行输入端的匹配;第二级是共源共栅放大器,用来在低频段提供较高的增益;第三级依然为共源共栅结构,用来在高频段提供较高的增益,从而补偿整个频带的增益使得增益平坦度更好。仿真结果表明:在电源电压为1.8v的条件下,所设计的LNA在3.1~10.6GHz的频带范围内增益(521)为20dB左右,具有很好的增益平坦性f±0.4dB),回波损耗S11、S22均小于-10dB,噪声系数为4.5dB左右,IIP3为-5dBm,PIdB为0dBm。  相似文献   

11.
Chang  J.-F. Lin  Y.-S. 《Electronics letters》2009,45(20):1033-1035
A CMOS distributed amplifier (DA) with flat and low noise figure (NF), and flat and high gain (S 21) is demonstrated. A flat and low NF was achieved by adopting a RL terminating network for the gate transmission line, and a slightly under-damped Q-factor for the second-order NF response. Besides, flat and high S 21 was achieved using the proposed cascade gain cell, which constitutes a cascode-stage with a low-Q RLC load and a splitting-load inductive-peaking inverter stage. In the high-gain (HG) mode, the DA consumed 27.6 mW and achieved S 21 of 17.5 plusmn 1.23 dB with an average NF of 3.24 dB over the 3-10 GHz band, one of the best reported NF performances for a CMOS UWB DA or LNA in the literature. The measured IIP3 was 2.1 dBm (at 8 GHz). In the low-gain (LG) mode, the DA achieved S 21 of 10.74 plusmn 1.2 dB and an average NF of 4.67 dB with a low power dissipation of 9 mW.  相似文献   

12.
A distributed amplifier with new cascade inductively coupled common-source gain-cell configuration is presented. Compared with other existing gain-cell configurations, the proposed cascade common-source gain cell can provide much higher transconductance and, hence, gain. The new distributed amplifier using the proposed gain-cell configuration, fabricated via a TSMC 0.18-/spl mu/m CMOS process, achieves an average power gain of around 10 dB, input match of less than -20 dB, and noise figure of 3.3-6.1 dB with a power consumption of only 19.6 mW over the entire ultra-wideband (UWB) band of 3.1-10.6 GHz. This is the lowest power consumption ever reported for fabricated CMOS distributed amplifiers operating over the whole UWB band. In the high-gain operating mode that consumes 100 mW, the new CMOS distributed amplifier provides an unprecedented power gain of 16 dB with 3.2-6-dB noise figure over the UWB range.  相似文献   

13.
Ultra-wideband tapered slot antenna with band cutoff characteristic   总被引:1,自引:0,他引:1  
A novel ultra-wideband (UWB) tapered slot antenna (TSA) is proposed that has both enhanced impedance bandwidth enough to cover UWB systems and band cutoff characteristic of 5 GHz WLAN band limited by IEEE802.11a and HIPERLAN/2. To achieve these two characteristics of wide bandwidth and partial band cutoff at the TSA, a broadband microstrip-slotline transition with multi-arm stubs and /spl lambda//4 short stubs, respectively, is used. From measured results, it is observed that wide bandwidth of about 2 octaves from 2.8 to 11.09 GHz for the VSWR<2 is achieved, while 5.05-5.93 GHz is cutoff with the radiated power of this cutoff band effectively suppressed as about -9 dB for the peak power level of other bands.  相似文献   

14.
A new circuit technique, the distributed waveform generator (DWG), is proposed for low-power ultra-wideband pulse generation, shaping and modulation. It time-interleaves multiple impulse generators, and uses distributed circuit techniques to combine generated wideband impulses. Built-in pulse shaping can be realized by programming the delay and amplitude of each impulse similar to an FIR filter. Pulse modulation schemes such as on-off keying (OOK) and pulse position modulation (PPM) can be easily applied in this architecture. Two DWG circuit prototypes were implemented in a standard 0.18 $muhbox{m}$ digital CMOS technology to demonstrate its advantages. A 10-tap, 10 GSample/s, single-polarity DWG prototype achieves a pulse rate of 1 GHz while consuming 50 mW, and demonstrates OOK modulation using 16 Mb/s PRBS data. A 10-tap, 10 GSample/s, dual-polarity DWG prototype was developed to generate UWB pulses compliant with the transmit power emission mask. Based on the latter DWG design, a reconfigurable impulse radio UWB (IR-UWB) transmitter prototype was implemented. The transmitter's pulse rate can be varied from 16 MHz range up to 2.5 GHz. The bandwidth of generated UWB pulses is also variable, and was measured up to 6 GHz (${- 10} {rm dB}$ bandwidth). Both OOK and PPM modulation schemes are successfully demonstrated using 32 Mb/s PRBS data. The IR-UWB transmitter achieves a measured energy efficiency of 45 pJ/pulse, independent of pulse rate.   相似文献   

15.
本文陈述了一个基于单端共栅与共源共栅级联结构的超宽带低噪声放大器(LNA)。该LNA用标准90-nm RF CMOS工艺实现并具有如下特征:在28.5到39 GHz频段内测得的平坦增益大于10 dB;-3 dB带宽从27到42 GHz达到了15 GHz,这几乎覆盖了整个Ka带;最小噪声系数(NF)为4.2 dB,平均NF在27-42 GHz频段内为5.1 dB;S11在整个测试频段内小于-11 dB。40 GHz处输入三阶交调点(IIP3)的测试值为 2 dBm。整个电路的直流功耗为5.3 mW。包括焊盘在内的芯片面积为0.58*0.48 mm2。  相似文献   

16.
We demonstrate a low dc power consumption SiGe heterojunction bipolar transistor (HBT) low noise amplifier (LNA) for ultra-wideband (UWB) applications covering the 0.5GHz to 10GHz band. Using theoretical analysis, the dominant design factor for low group delay variation is identified and applied to UWB LNA design. The implemented SiGe LNA achieves a gain of 13dB, a minimum noise figure of 3.3dB, and an IIP3 of$-$7.5dBm between 0.5GHz and 10GHz, while consuming a dc power of only 9.6mW. This SiGe UWB LNA exhibits less than 22ps of uniform group delay variation over the entire band. To the best of the authors' knowledge, this is the first attempt to analyze the effects of group delay variation on the operation of wideband LNAs.  相似文献   

17.
基于FR4环氧板,设计了一种可用于体域网的非对称共面波导馈电的超宽带天线。该天线由Y型贴片、梯形地板和三叉戟共面馈线组成。Y型贴片、圆形贴片、三角形贴片实现4~5 GHz的中低频处带宽小于-10 d B的效果,梯形地板和三叉戟共面馈线实现7~14 GHz的高频处带宽小于-10 d B的效果。该天线采用非对称共面波导的馈电方式,具有良好的共面性与高度的集成性,使得天线的总体尺寸更小,辐射贴片的面积为22 mm×21 mm。与以往的小型化超宽带天线相比,该天线具有尺寸更小、带宽更宽的优势。经网络矢量分析仪测试结果表明,该天线在2. 14~11. 32 GHz的超宽带频段内回波损耗小于-10 d B(相对带宽为136. 4%),可适用于2. 4/5. 2/5. 8 GHz无线局域网、3. 5/5. 5 GHz WiMAX、LTE频段38和LTE频段40。同时,该天线距离人体大于5 mm时的比吸收率(SAR)小于2 W/kg,满足国际标准。  相似文献   

18.
We report submicron transferred-substrate AlInAs/GaInAs heterojunction bipolar transistors (HBT's). Devices with 0.4-μm emitter and 0.4-μm collector widths have 17.5 dB unilateral gain at 110 GHz. Extrapolating at -20 dB/decade, the power gain cutoff frequency fmax is 820 GHz. The high fmax, results from the scaling of HBT's junction widths, from elimination of collector series resistance through the use of a Schottky collector contact, and from partial screening of the collector-base capacitance by the collector space charge  相似文献   

19.
A linearization technique for ultra-wideband low noise amplifier (UWB LNA) has been designed and fabricated in standard 0.18 μm CMOS technology. The proposed technique exploits the complementary characteristics of NMOS and PMOS to improve the linearity performance. A two-stage UWB LNA is optimized to achieve high linearity over the 3.1-10.6 GHz range. The first stage adopts inverter topology with resistive feedback to provide high linearity and wideband input matching, whereas the second stage is a cascode amplifier with series and shunt inductive peaking techniques to extend the bandwidth and achieve high gain simultaneously. The proposed UWB LNA exhibits a measured flat gain of 15 dB within the entire band, a minimum noise figure of 3.5 dB, and an IIP3 of 6.4 dBm while consuming 8 mA from a 1.8 V power supply. The total chip area is 0.39 mm2, including all pads. The measured input return loss is kept below −11 dB, and the output return loss is −8 dB, from 3.1 to 10.6 GHz.  相似文献   

20.
In this paper, a compact dual-band ultra-wideband (UWB) filter has been newly designed and fabricated for 3.1–4.75 GHz and 6.0–8.5 GHz UWB system applications by embedding all passive lumped elements into low temperature co-fired ceramic (LTCC) substrate. In order to reduce its size/volume and prevent parasitic electromagnetic (EM) coupling between the embedded passive elements, it was newly designed by using a modified 3rd order Chebyshev filter topology and J-inverter transformation technology. Moreover, in order to completely reject the wireless local area network (WLAN) bands of 2.4 GHz and 5.15 GHz, an independent transmission zeros technology was applied. For forming the higher passband, lowpass filters were also applied with two LC resonant circuits by using roll-off characteristics by independent transmission zeros. The measured insertion losses in the lower and upper passbands were better than 2.5 and 2.3 dB, respectively. Return loss and group delay were better than 8 dB and 0.61 ns, respectively in all the passbands. Independent transmission zeros that occurred at 5.17 and 5.42 GHz provided suppression of 22 dB at the WLAN band. The size/volume of the fabricated LTCC dual-band UWB filter was 3.65×2.35×0.65 (H) mm3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号