首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For pt. I see ibid., vol. 43, no. 5, p. 911-22 (1996). Pt. I presented the basic principles for applying high-resolution wide-band direction-of-arrival estimation techniques to pulsed-wave Doppler ultrasound. Such techniques provide high-resolution velocity profiles and enable the identification of multiple velocity components inside a sample volume. Another important application is the identification and rejection of wall clutter signals. A first and essential step in applying these techniques is to convert the wide-band echoes to narrow band. The 2D DFT projection method is used for this conversion. Two different narrow-band high-resolution methods are then applied to estimate the velocity distributions; the minimum variance (MV) and the multiple signal classification (MUSIC). Experimental results are presented to illustrate the potentials and limitations of applying wide-band DOA methods to different applications in pulsed-wave Doppler ultrasound  相似文献   

2.
超声多普勒信号平均频率估计方法的比较研究   总被引:1,自引:1,他引:0       下载免费PDF全文
本文介绍了一些常用的超声多谱勒信号平均频率估计法,并引入一种新的估计法:基于Teager算法的平均频率估计,然后分别对计算机模拟的多普勒信号和流速校刻系统的多普勒信号进行平均频率的估计和比较,给出了不同估计方法的优缺点和适用范围。  相似文献   

3.
Real-time flow velocity measurement is a practical issue in industrial and biomedical applications. Because their good frequency resolution, parametric methods such as autoregressive (AR) modeling and time-frequency distributions (TFD) are generally preferred to Fourier analysis. However, these methods become highly inaccurate in the presence of colored noise. We review here the principal parametric and nonparametric techniques and show their limitations in the estimation of Doppler frequency in the presence of strong colored noise. Different solutions to overcome these limitations are then proposed and compared using synthetic Doppler signals with colored noise.  相似文献   

4.
The theoretical foundation is presented for velocity estimation with a pulsed wave (PW) Doppler system transmitting linear FM signals. The Doppler system possesses echo ranging capabilities and is evaluated in the context of Doppler ultrasound for blood velocity measurement. The FM excitation signal is formulated and the received signal is derived for a single moving particle. This signal is similar to the transmitted signal, but with modified parameters due to Doppler effect and range. The demodulated received signal is subsequently derived and analyzed. It is shown that, due to the Doppler effect, this is a linear sweep signal as well. The velocity and range information obtainable from one and two consecutively received signals are described. The latter case establishes the basis for an FM Doppler system for blood velocity measurements.  相似文献   

5.
方昕  汪源源  王威琪 《声学技术》2006,25(4):304-308
超声多普勒技术作为一种无损检测手段被广泛应用于血管狭窄的检测。以往的血管狭窄仿真信号的研究仅限于双边狭窄的对称情况,文章提出了一种单边狭窄血管中超声多普勒信号的仿真方法。首先用有限元分析方法(FEM)计算出狭窄血管中血流流速场分布情况,然后用总体分布非参数估计法计算出超声多普勒信号的功率谱密度(PSD),再用余弦叠加法获取仿真的超声多普勒时域信号。用快速傅里叶变换(FFT)计算仿真超声多普勒信号的频谱,从中计算最大频率、平均频率和频谱宽度等参数,分析它们在不同流速和狭窄程度下的特征,为血管疾病的诊断提供敏感的参数。  相似文献   

6.
Current ultrasonic blood flow measurement systems estimate only that component of flow which is parallel to the incident ultrasound beam. This is done by relating the mean backscattered frequency shift to the axial velocity component through the classical Doppler equation. A number of ultrasonic techniques for estimating the two-dimensional (2D) blood velocity vector have been published, both Doppler and non-Doppler. Several three-dimensional (3D) blood velocity vector techniques have also been proposed, all of which require a multiplicity of transducers or lines of sight. Here a technique is described for estimating the total velocity vector, using only two transducers. This is achieved by measuring not only the frequency shifts but also the bandwidths of the backscattered spectra, making use of the fact that the bandwidth of a Doppler spectrum has been shown to be proportional to the velocity component normal to the sound beam. Partial experimental verification of the proposed vector flow estimation scheme is demonstrated by using a constant velocity thread phantom  相似文献   

7.
For pt.I see ibid., vol.50, no.3, p.267-78 (2003). This paper presents an application of continuous wave ultrasound Doppler velocity measurements to two-phase flow in pipes. In many petroleum wells, the multiphase flow is separated into two phases: the first is a liquid phase and the second is a gas phase with small scatterers. The problem of multiphase velocity profile measurements has not been satisfactorily solved by classical approaches due to the multiphase nature of the fluid and the presence of colored noise, which introduces a significant bias in classical frequency estimators. We propose the use of resolution frequency techniques to overcome the classical limitations. Direct estimation of Doppler frequency then obtained using either time frequency maximum frequency or arguments of poles of the parametric model that identifies the Doppler part of the signal is discussed. The tests made with synthetic Doppler signals and two-phase flow have demonstrated the excellent performance of the high resolution techniques based on reassignment and parametric techniques.  相似文献   

8.
Blood flow measurement using Doppler ultrasound has become a useful tool for diagnosing cardiovascular diseases and as a physiological monitor. Recently, pocket-sized ultrasound scanners have been introduced for portable diagnosis. The present paper reports the implementation of a portable ultrasound pulsed-wave (PW) Doppler flowmeter using a smartphone. A 10-MHz ultrasonic surface transducer was designed for the dynamic monitoring of blood flow velocity. The directional baseband Doppler shift signals were obtained using a portable analog circuit system. After hardware processing, the Doppler signals were fed directly to a smartphone for Doppler spectrogram analysis and display in real time. To the best of our knowledge, this is the first report of the use of this system for medical ultrasound Doppler signal processing. A Couette flow phantom, consisting of two parallel disks with a 2-mm gap, was used to evaluate and calibrate the device. Doppler spectrograms of porcine blood flow were measured using this stand-alone portable device under the pulsatile condition. Subsequently, in vivo portable system verification was performed by measuring the arterial blood flow of a rat and comparing the results with the measurement from a commercial ultrasound duplex scanner. All of the results demonstrated the potential for using a smartphone as a novel embedded system for portable medical ultrasound applications.  相似文献   

9.
正交相位法是超声多普勒技术中提取双向性血流信息的一种重要方法。由于正交信号对之间通常存在幅度和相位的不平衡,从而导致了正、反血流信息的混淆,影响了平均频率,最大的估计和声谱图的正确显示,本文提出的补偿方法,让其中一个正交信号通过按一定要求设计的线性滤波器,从而得到幅度和相位基本平衡的正交信号对,提高了超声多普勒系统提取双向性血流的性能。  相似文献   

10.
This paper evaluates experimentally the performance of a novel axial velocity estimator, the 2D autocorrelator, and its Doppler power estimation counterpart, the 2D zero-lag autocorrelator, in the context of ultrasound color flow mapping. The evaluation also encompasses the well-established 1D autocorrelation technique for velocity estimation and its corresponding power estimator (1D zero-lag autocorrelator), to allow performance comparisons under identical conditions. Clutter-suppressed in vitro data sets from a steady-flow system are used to document the effect of the range gate and ensemble length, noise level and angle of insonation on the precision of the velocity estimates. The same data sets are used to examine issues related to the estimation of the Doppler signal's power. The first-order statistics of power estimates from regions corresponding to flow and noise are determined experimentally and the ability of power-based thresholding to separate flow signals from noise is characterized by means of ROC analysis. In summary, the results of the in vitro evaluation show that the proposed 2D-autocorrelation form of processing is consistently better than the corresponding 1D-autocorrelation techniques, in terms of both velocity and power estimation. Therefore, given their relatively modest implementation requirements, the 2D-autocorrelation algorithms for velocity and power estimation appear to represent a superior, yet realistic, alternative to conventional Doppler processing for color flow mapping  相似文献   

11.
基于均匀圆阵的信号二维方向角和多普勒频率的盲估计   总被引:4,自引:0,他引:4  
针对均匀圆形阵列 ,在时空旋转因子的基础上 ,推导出四阶累积量矩阵 ,采用波达方向矩阵法 ,实现了信号的方位角、俯仰角和多普勒频率的同时估计。此估计算法利用所有阵元信息估计信号波达方向 ,提高了方向估计精度 ,解决了“频率兼并”问题 ,使有效应用范围扩大。利用了四阶累积量的盲高斯性 ,有效地抑制了高斯白或有色噪声的影响 ,仿真结果表明了此算法的有效性  相似文献   

12.
利用超声回波跟踪技术测量血流速度的实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
文章主要介绍了利用超声回波跟踪技术进行血流速度测量的原理和方法,通过对运动弦线速度的测量实验,比较了这种方法和传统的超声多谱勒技术在血流速度测量上的性能差异。  相似文献   

13.
In this paper, 2 adaptive spectral estimation techniques are analyzed for spectral Doppler ultrasound. The purpose is to minimize the observation window needed to estimate the spectrogram to provide a better temporal resolution and gain more flexibility when designing the data acquisition sequence. The methods can also provide better quality of the estimated power spectral density (PSD) of the blood signal. Adaptive spectral estimation techniques are known to provide good spectral resolution and contrast even when the observation window is very short. The 2 adaptive techniques are tested and compared with the averaged periodogram (Welch's method). The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set of matched filters (one for each velocity component of interest) and filtering the blood process over slow-time and averaging over depth to find the PSD. The methods are tested using various experiments and simulations. First, controlled flow-rig experiments with steady laminar flow are carried out. Simulations in Field II for pulsating flow resembling the femoral artery are also analyzed. The simulations are followed by in vivo measurement on the common carotid artery. In all simulations and experiments it was concluded that the adaptive methods display superior performance for short observation windows compared with the averaged periodogram. Computational costs and implementation details are also discussed.  相似文献   

14.
Doppler-based flow analysis methods require acquisition of ultrasound data at high spatio-temporal sampling rates. These rates represent a major technical challenge for ultrasound systems because a compromise between spatial and temporal resolution must be made in conventional approaches. Consequently, ultrasound scanners can either provide full quantitative Doppler information on a limited sample volume (spectral Doppler), or averaged Doppler velocity and/or power estimation on a large region of interest (Doppler flow imaging). In this work, we investigate a different strategy for acquiring Doppler information that can overcome the limitations of the existing Doppler modes by significantly reducing the required acquisition time. This technique is called ultrafast compound Doppler imaging and is based on the following concept: instead of successively insonifying the medium with focused beams, several tilted plane waves are sent into the medium and the backscattered signals are coherently summed to produce high-resolution ultrasound images. We demonstrate that this strategy allows reduction of the acquisition time by a factor of up to of 16 while keeping the same Doppler performance. Depending on the application, different directions to increase performance of Doppler analysis are proposed and the improvement is quantified: the ultrafast compound Doppler method allows faster acquisition frame rates for high-velocity flow imaging, or very high sensitivity for low-flow applications. Full quantitative Doppler flow analysis can be performed on a large region of interest, leading to much more information and improved functionality for the physician. By leveraging the recent emergence of ultrafast parallel beamforming systems, this paper demonstrates that breakthrough performances in flow analysis can be reached using this concept of ultrafast compound Doppler.  相似文献   

15.
The cross-correlation method (CCM) for blood flow velocity measurement using Doppler ultrasound is based on time delay estimation of echoes from pulse-to-pulse. The sampling frequency of the received signal is usually kept as low as possible in order to reduce computational complexity, and the peak in the correlation function is found by interpolating the correlation function. The parabolic-fit interpolation method introduces a bias at low sampling rate to the ultrasound center frequency ratio. In this study, four different methods are suggested to improve the estimation accuracy: (1) Parabolic interpolation with bias-compensation, derived from a theoretical signal model. (2) Parabolic interpolation combined with linear filter interpolation of the correlation function. (3) Parabolic interpolation to the complex correlation function envelope. (4) Matched filter interpolation applied to the correlation function. The new interpolation methods are analyzed both by computer simulated signals and RF-signals recorded from a patient with time delay larger than 1/f(0), where f(0) is the center frequency. The simulation results show that these methods are more accurate than the parabolic-fit method. From the simulation, the worst estimation accuracy is about 1.25% of 1/f(0) for the parabolic-fit interpolation, and it is improved by the above methods to less than 0.5% of 1/f(0) when the sampling rate is 10 MHz, the center frequency is 2.5 MHz and the bandwidth is 1 MHz. This improvement also can be observed in the experimental data. Furthermore, the matched filter interpolation gives the best performance when signal-to-noise ratio (SNR) is low. This is verified both by simulation and experimentation.  相似文献   

16.
戴征坚  李志舜 《声学技术》2005,24(4):250-253
实际系统中阵列误差导致的模型失配问题一直是高分辨方位估计技术走向实用化的一个瓶颈。相对于窄带信号,宽带信号阵列模型误差更加复杂和多样,通过建立宽带阵列信号误差模型,得出了基于空间平滑的稳健的宽带高分辨算法是一种抑制阵列误差的有效方法的结论,这种基于空间平滑的宽带高分辨算法,通过空间平滑后对各频率处不同子阵的互谱密度矩阵求和,一定程度上减弱了阵列误差的影响,具有较高的稳健性。本文结合消声水池试验,分析并验证了其效果。  相似文献   

17.
Current clinical Doppler ultrasound systems could only measure the flow vector parallel to the ultrasound beam axis, and the knowledge of the Doppler angle (beam-to-flow angle) is needed to calculate the real flow velocity. Currently, the Doppler angle is determined visually by manually aligning a vessel axis marker along the blood vessel on the duplex scan image of the ultrasound. The application of this procedure is often limited by practical constraints; therefore, measurements are not reliable. In order to overcome this problem, the authors developed a simple Doppler angle and flow velocity estimation method using a combination of the classic and transverse Doppler effects. This method uses only a single focused annular array transducer to estimate the Doppler angle and the flow velocity. The authors have verified experimentally that this method is successful for measuring constant flow in a flow phantom between 45 degrees and 80 degrees Doppler angle. The standard deviation of the estimated Doppler angles is less than 4.5 degrees . This method could be implemented easily in medical Doppler ultrasound systems to automatically estimate the Doppler angle and the flow velocity.  相似文献   

18.
超声Doppler血流信号瞬时频率的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

19.
The methods reported for the measurement of distance and medium velocity using ultrasound are based on the principles of pulse radar, pulse Doppler radar, and continuous- wave radar. In this paper, the use of frequency-modulated sonic/ultrasonic radiations for such measurements has been proposed. The required measurement setup has been described, and the mathematical model needed for extraction of distance/medium velocity from the electrical output signal has been developed. The proposed measurement setup has been implemented for distance measurement with commonly used ICs.  相似文献   

20.
Large velocity estimation errors can occur in dual beam Doppler ultrasound velocity measurement systems when there is left/right sample volume misregistration, particularly when the interbeam angle is small. Such misregistration will occur when there is tissue inhomogeneity. This is investigated for a typical type of inhomogeneity-a layer of fat-by calculating the amount of both angle and translation misregistration occurring in such a system realized using a single linear array transducer. The complex sample volume sensitivity is calculated using a modified time domain approach, combining the spatial impulse response method with ray tracing. The effects on these misregistrations of altering the aperture sizes and their relative positions on the array is then investigated to derive an improved aperture configuration for dual beam velocity estimation. Arrangements with transmit apertures wider than the receive apertures are shown to be preferable in this context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号