首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
建立了密封舱土压力增量与盾构机推进速度、螺旋输送机转速的排土控制的盾构土压平衡控制模型,提出了密封舱土压力优化控制算法.数值模拟结果表明,在保持推进速度不变的情况下,控制螺旋输送机的转速调整密封舱的压力,可控制密封舱内土压力在设定的范围内,从而实现土压平衡.  相似文献   

2.
土压平衡盾构掘进时,一般是通过监测地表沉降数据对土仓压力进行调整,使盾构达到土压平衡状态,但该方法过于滞后,易造成不平衡掘进状况.故分析控制土量平衡的方法使盾构掘进时处于土压平衡状态,确保开挖面土层的稳定.阐述了土量平衡中的挖土量与排土量,得出使盾构达到土量平衡状态时,控制螺旋输送机转速与推进速度的比值(N/V),并总结出盾构掘进中土量平衡控制的标准.基于合肥地铁4号线隧道工程,对现场监测数据进行土量平衡分析,同时讨论关键参数的相关性,以保障盾构施工安全.结果表明:合肥地区类似工程盾构施工时可将N/V控制在0.162附近,此时盾构对土层扰动最小;土仓压力随着N/V和刀盘扭矩的增大而减小;总推力与N/V存在一定的相关性.  相似文献   

3.
盾构掘进机土压平衡的实现   总被引:12,自引:0,他引:12  
为了控制地面沉降,减少地表变形,采用电液比例控制技术对盾构掘进机推进液压系统和螺旋输
送机液压系统进行了集成设计.其中推进液压系统采用了比例压力流量复合控制技术,螺旋输送机液压系
统采用了电反馈比例控制技术,在模拟试验台上进行了土压平衡实验分析.结果表明,通过实时控制推进速
度或螺旋输送机转速,对盾构掘进机进行推进控制或排土控制操作,可控制密封仓内土压力在设定范围
内,从而实现土压平衡.  相似文献   

4.
盾构隧道沉降影响因素分析与施工优化   总被引:2,自引:0,他引:2  
以北京地铁10~#线某盾构法隧道施工为背景,分析了盾构施工中各因素对地表变形的影响.结果表明:地基变形模量的提高,能减小地面沉降和施工过程中的差异沉降;围岩应力释放率越小,地面沉降和施工过程中的差异沉降越小;盾构正面土压力越大,越容易引起前方土体隆起,减少最终沉降,同时,越容易增大施工过程中的差异沉降;等代层变形模量越大或者越小有利于减少沉降,居中时沉降最大.通过对施工参数优化,使得盾构推进过程中对周围地面和结构物的影响最小.  相似文献   

5.
合理确定掘进工作面的土压力对于准确设定土压平衡盾构机密封舱的土压力以及有效控制隧道掘进过程中地表变形是十分重要的.基于弹性力学理论、土力学原理和迭加原理,分别建立了掘进工作面土压力三种计算模型.结合某工程实例,分析了三种计算方法的异同点.研究表明,基于弹性力学理论和土力学原理所得到的解基本相近;而采用土压力与水压力分开计算然后叠加方法所得到的解在极限条件下比前两种方法大50%.  相似文献   

6.
以实际工程为背景,设计了具有单一卵石层和2个既有隧道的试验模型.基于自主研发的土压平衡盾构试验平台,开展了卵石地层盾构下穿既有马蹄形隧道和矩形隧道的模型试验.在试验过程中,记录了盾构机的施工动力和排土量,同时监测了试验模型的地表沉降,以及既有隧道的应变和作用在其上的土压力.通过盾构机施工动力和排土量的变化,分析了既有隧道对盾构施工状态的影响.利用盾构下穿过程中盾构排土量的变化,解释了既有隧道周围卵石土体发生塌落破坏的原因.基于实测的地表沉降和作用在既有隧道上土压力的变化规律,揭示了盾构下穿过程中既有隧道与卵石土体的相互作用机理.  相似文献   

7.
本文利用有限元程序 Midas/GTS,综合考虑土体非线性、土体与盾构作用、注浆压力、千斤顶推力、密封舱土压力等要素,建立了隧道-土-桩基-建筑物三维非线性有限元模型,研究地表一侧存在建筑物时及盾构施工参数对地表沉降的影响。通过三维仿真数值模拟得出以下结论:地表存在建筑物时,地表沉降最大值比无建筑物时要小,且最大沉降值背离建筑物方向,偏离盾构中心轴线;盾构支护压力越接近侧向静止水土压力地表沉降越小,合理的控制盾构施工参数(注浆压力、盾构机千斤顶推力)可以有效减小地表沉降。  相似文献   

8.
依托杭州地铁2号线某盾构区间段工程,对软土区双线盾构施工引起的地表变形进行现场实测,分析地表变形的规律及双线Peck公式在软土地区的适用性,研究土体损失率的取值. 分析结果表明:软土地区双线盾构掘进引起的沉降绝对值较大且二次扰动效应明显强于其他土质;单环排土量与盾尾注浆压力的比值与地表最终沉降之间呈现较好的正相关性;土体损失率与单环排土量之间满足玻尔兹曼分布规律,即在盾构正常施工的情况下,土体损失率分布在一个有限区间内,随着单环排土量的增加而增大.  相似文献   

9.
依托杭州地铁2号线某盾构区间段工程,对软土区双线盾构施工引起的地表变形进行现场实测,分析地表变形的规律及双线Peck公式在软土地区的适用性,研究土体损失率的取值.分析结果表明:软土地区双线盾构掘进引起的沉降绝对值较大且二次扰动效应明显强于其他土质;单环排土量与盾尾注浆压力的比值与地表最终沉降之间呈现较好的正相关性;土体损失率与单环排土量之间满足玻尔兹曼分布规律,即在盾构正常施工的情况下,土体损失率分布在一个有限区间内,随着单环排土量的增加而增大.  相似文献   

10.
依托杭州地铁2号线某盾构区间段工程,对软土区双线盾构施工引起的地表变形进行现场实测,分析地表变形的规律及双线Peck公式在软土地区的适用性,研究土体损失率的取值.分析结果表明:软土地区双线盾构掘进引起的沉降绝对值较大且二次扰动效应明显强于其他土质;单环排土量与盾尾注浆压力的比值与地表最终沉降之间呈现较好的正相关性;土体损失率与单环排土量之间满足玻尔兹曼分布规律,即在盾构正常施工的情况下,土体损失率分布在一个有限区间内,随着单环排土量的增加而增大.  相似文献   

11.
Earth pressure balance control for EPB shield   总被引:1,自引:0,他引:1  
This paper mainly deals with the critical technology of earth pressure balance (EPB) control in shield tunneling. On the assumption that the conditioned soil in the working chamber of the shield is plasticized, a theoretical principle for EPB control is proposed. Dynamic equilibrium of intake volume and discharge volume generated by thrust and discharge is modeled theoretically to simulate the earth pressure variation during excavating. The thrust system and the screw conveyor system for earth pressure cont...  相似文献   

12.
针对类矩形盾构施工的扰动控制问题,基于弹性力学Mindlin解,考虑刀盘正面附加推力、壳体与土体之间摩阻力、同步注浆压力以及土体损失4种因素的共同作用,采用数值积分法和叠加原理对地表变形进行计算分析.结果表明:4种因素共同作用下类矩形盾构掘进地表相当范围内表现为沉降,最大收敛沉降约为33 mm,开挖面前方的沉降影响主要集中在前方10 m范围;同步注浆压力产生的地表隆起可以部分抵消土体损失引发的沉降,因而合理的同步注浆有利于沉降控制;4类因素中,正面附加推力和盾壳摩阻力产生的地表变形很小.理论结果与实测数据基本吻合,可为后期类矩形盾构隧道施工的扰动控制提供理论参考.  相似文献   

13.
设计了1.8 m土压平衡(EPB)模拟试验盾构的刀盘驱动液压系统,介绍了该液压驱动系统的工作原理和控制方法,该系统采用了变转速泵控技术.通过统计分类的模式识别方法分析了1.8 m试验盾构的掘进过程,以盾构掘进的场切深指数(FPI)、扭矩切深指数(TPI)构成了掘进土层状况的特征空间,基于土层识别及刀盘驱动功率效能评价建立了盾构刀盘转速专家控制方法.建立该液压驱动系统的AMESim仿真模型,仿真研究了液压系统的效率、开环和闭环调速性能.试验研究表明,该液压系统开环调速性能稳定,但刀盘转速波动较大.  相似文献   

14.
合理的土仓压力是保证开挖面稳定和减小地表沉降的关键,传统土仓压力计算公式多数以开挖面变形破坏为研究基础,未能结合盾构机实际工作状态,导致计算值与实际值间有较大差距。为获取准确的土仓压力数值,通过对掌子面进行力学分析,结合盾构机工作原理,推导出改进后的土仓压力计算公式,并进一步分析了隧道埋深比、盾构机掘进速度对土仓压力的影响。最后,以合肥地铁四号线为工程背景,利用有限元软件验证了改进后土仓压力计算公式的正确性与适用性。  相似文献   

15.
饱和沙土中土压盾构开挖面极限支护力   总被引:2,自引:0,他引:2  
为了避免土压平衡盾构在含水砂层中掘进时出现支护压力不足的现象,将渗流作用引入上限分析,以评估支护力对开挖面稳定的影响,得到土压平衡盾构在饱和沙土中掘进时的支护力方程.通过支护力方程各项系数比较以及敏感性分析,表明盾构直径与渗流作用对支护力影响显著.随着地下水位的升高,渗流因素在支护力中所占的比重提高;在高水头状况下,渗流作用大幅降低支护力,是造成开挖面前方土体失稳的最主要因素.给出较直观的支护力方程,采用简洁方法来分析在渗流作用下盾构支护力设置的安全性,结合地铁工程实例,分析开挖面失稳事故原因,给出合理的开挖面支护压力.  相似文献   

16.
软黏土中盾构掘进地层变形与掘进参数关系   总被引:1,自引:0,他引:1  
宁波地铁某区间单线隧道穿越地层主要为淤泥质黏土层,上覆地层主要为砂质粉土和淤泥质土.针对2类典型的上覆地层中土压平衡盾构施工,获取了相应的地表沉降监测数据,研究地表沉降与盾构施工过程的相互关系.采用经典高斯经验公式对盾构掘进引起的地表横向沉降曲线和纵向沉降发展曲线进行拟合,得到各监测断面沉降槽宽度ix及沉降槽宽度系数K.采用平移累积高斯沉降曲线对纵向沉降发展曲线进行拟合,获得盾构掘进引起的沿线地层损失率.研究盾构掘进参数取值对地层损失率的影响.结果表明,盾构推力、开挖面支护压力以及盾尾注浆率对地层损失率的影响显著.给出类似地层中各项盾构掘进参数的参考范围.  相似文献   

17.
大粒径卵砾石地层是北京地铁修建过程中开挖难度最大的地层之一,给土压平衡盾构施工造成了一系列的难题。刀盘是土压平衡盾构的重要构件之一,合理的刀盘结构型式是大粒径卵砾石地层土压平衡盾构高效、可靠运行的前提。为了找出适用于大粒径卵砾石地层的刀盘结构型式,以北京地铁九号线盾构工程为背景,开展大粒径卵砾石地层土压平衡盾构开挖原型试验,基于"北京地铁盾构施工实时管理系统"和"北京地铁建设安全风险技术管理体系"收集盾构关键施工参数,以现场掘进试验数据有基础,对盾构掘进效能、盾构关键参数地层适应性及刀具磨损情况进行了对比研究。研究结果表明:1)大粒径砂卵石地层辐条式刀盘适应性更好,掘进效率更高,对刀具的磨损控制更为有利;2)辐条式刀盘可适当增大开口率至55%~65%;3)大粒径卵砾石地层,辐条式刀盘比面板式土压力控制更加稳定;提高盾构掘进速度的同时,应注意盾构土压力的控制,合理的盾构推进速度应为20~60mm/min。  相似文献   

18.
The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sands were reproduced and the slump test and the direct shear test of the conditioned sands were implemented. A DEM equivalent model that can simulate the macro mechanical characteristic of the conditioned sands was proposed, and the corresponding numerical models of the slump test and the shear test were established. By selecting proper DEM model parameters, the errors of the slump values between the simulation results and the test results are in the range of 10.3%–14.3%, and the error of the curves between the shear displacement and the shear stress calculated with the DEM simulation is 4.68%–16.5% compared with that of the laboratory direct shear test. This illustrates that the proposed DEM equivalent model can approximately simulate the mechanical characteristics of the conditioned sands, which provides the basis for further simulation of the interaction between the conditioned soil and the chamber pressure system of the EPB machine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号