首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Water samples were collected from Midwestern streams in 1994-1995 and 1998 as part of a study to help determine if changes in herbicide use resulted in changes in herbicide concentrations since a previous reconnaissance study in 1989-1990. Sites were sampled during the first significant runoff period after the application of pre-emergent herbicides in 1989-1990, 1994-1995, and 1998. Samples were analyzed for selected herbicides, two atrazine metabolites, three cyanazine metabolites, and one alachlor metabolite. In the Midwestern USA, alachlor use was much greater in 1989 than in 1995, whereas acetochlor was not used in 1989 but was commonly used in 1995. The use of atrazine, cyanazine, and metolachlor was approximately the same in 1989 and 1995. The median concentrations of atrazine, alachlor, cyanazine, and metolachlor were substantially higher in 1989-1990 than in 1994-1995 or 1998. The median acetochlor concentration was higher in 1998 than in 1994 or 1995.  相似文献   

2.
The proportion of chloroacetanilide herbicide degradates, specifically the ethane sulfonic (ESA) and oxanilic (OA) acids, averaged 70% of the total herbicide concentration in samples from the Upper Mississippi River. In samples from the Missouri River and the Ohio River, the proportion of chloroacetanilide degradates in the total herbicide concentration was much less, 24% and 41%, respectively. The amount of tile drainage throughout the Mississippi River Basin appeared to be related to the occurrence and distribution of chloroacetanilide degradates in water samples. Pesticide concentrations in streams of the Mississippi River Basin have been well characterized. However, recent research demonstrates that in order to more fully understand the fate and transport of pesticides, the major pesticide degradates need to be included in the analysis. From March 1999 through May 2001, water samples from four major junctures of the Mississippi River Basin were collected and analyzed for a suite of herbicides and their degradate compounds. Each sampling site was selected to represent a major part of the Mississippi River: upper and lower Mississippi, Missouri and Ohio Rivers. Each basin has unique landscape variables, geology, hydrology, precipitation, and land use, which is reflected in the pesticide content at the most downstream sample site near the mouth of the Mississippi River. Atrazine was the most frequently detected herbicide (detected in 97% of the samples), followed by metolachlor (60%), and acetochlor (31%). The most frequently detected degradates were metolachlor ESA (69%), followed by deethylatrazine (62%), metolachlor OA (37%), and alachlor ESA (37%). Metolachlor ESA was detected more frequently than its parent compound (69 vs. 60%), as was alachlor ESA (37 vs. 9%). After an improvement was made in the analytical method, metolachlor ESA was detected in every sample, metolachlor OA in 89% of the samples, alachlor ESA in 84%, acetochlor ESA in 71%, and acetochlor OA in 66%.  相似文献   

3.
Water samples were collected near a Cedar Rapids, Iowa municipal well field from June 1998 to August 1998 and analyzed for selected triazine and acetanilide herbicides and degradates. The purpose of the study was to evaluate the occurrence of herbicides and herbicide degradates in the well field during a period following springtime application of herbicides to upstream cropland. The well field is in an alluvial aquifer adjacent to the Cedar River. Parent herbicide concentrations generally were greatest in June, and decreased in July and August. Atrazine was most frequently detected and occurred at the greatest concentrations; acetochlor, cyanazine and metolachlor also were detected, but at lesser concentrations than atrazine. Triazine degradate concentrations were relatively small (< 0.50 microg/l) and generally decreased from June to August. Although the rate of groundwater movement is relatively fast (approx. 1 m per day) in the alluvial aquifer near the Cedar River, deethylatrazine (DEA) to atrazine ratios in groundwater samples collected near the Cedar River indicate that atrazine and DEA probably are gradually transported into the alluvial aquifer from the Cedar River. Deisopropylatrazine (DIA) to DEA ratios in water samples indicate most DIA in the Cedar River and alluvial aquifer is produced by atrazine degradation, although some could be from cyanazine degradation. Acetanilide degradates were detected more frequently and at greater concentrations than their corresponding parent herbicides. Ethanesulfonic-acid (ESA) degradates comprised at least 80% of the total acetanilide-degradate concentrations in samples collected from the Cedar River and alluvial aquifer in June, July and August; oxanilic acid degradates comprised less than 20% of the total concentrations. ESA-degradate concentrations generally were smallest in June and greater in July and August. Acetanilide degradate concentrations in groundwater adjacent to the Cedar River indicate acetanilide degradates are transported into the alluvial aquifer in a manner similar to that indicated for atrazine and DEA.  相似文献   

4.
The Mississippi Delta Management Systems Evaluation Area (MD-MSEA) project was established in 1994 in three small watersheds (202 to 1,497 ha) that drain into oxbow lakes (Beasley, Deep Hollow, and Thighman). The primary research objective was to assess the implications of management practices on water quality. Monthly monitoring of herbicide concentrations in lake water was conducted from 2000 to 2003. Water samples were analyzed for atrazine, cyanazine, fluometuron, metolachlor, and atrazine metabolites. Herbicide concentrations observed in the lake water reflected cropping systems of the watershed, e.g., atrazine and metolachlor concentrations were associated with the level of corn and sorghum production, whereas cyanazine and fluometuron was associated with the level of glyphosate-sensitive cotton production. The dynamics of herbicide appearance and dissipation in lake samples were strongly influenced by herbicide use, lake hydrology, rainfall pattern, and land management practices. The highest maximum concentrations of atrazine (7.1 to 23.4 microg L(-1)) and metolachlor (0.7 to 14.9 microg L(-1)) were observed in Thighman Lake where significant quantities of corn were grown. Introduction of s-metolachlor and use of glyphosate-resistant cotton coincided with reduced concentration of metolachlor in lake water. Cyanazine was observed in two lakes with the highest levels (1.6 to 5.5 microg L(-1)) in 2000 and lower concentrations in 2001 and 2002 (<0.4 microg L(-1)). Reduced concentrations of fluometuron in Beasley Lake were associated with greater use of glyphosate-resistant cotton and correspondingly less need for soil-applied fluometuron herbicide. In contrast, increased levels of fluometuron were observed in lake water after Deep Hollow was converted from conservation tillage to conventional tillage, presumably due to greater runoff associated with conventional tillage. These studies indicate that herbicide concentrations observed in these three watersheds were related to crop and soil management practices.  相似文献   

5.
Analytical methods using high-performance liquid chromatography-diode array detection (HPLC-DAD) and high-performance liquid chromatography/mass spectrometry (HPLC/MS) were developed for the analysis of the following chloroacetanilide herbicide metabolites in water: alachlor ethanesulfonic acid (ESA); alachlor oxanilic acid; acetochlor ESA; acetochlor oxanilic acid; metolachlor ESA; and metolachlor oxanilic acid. Good precision and accuracy were demonstrated for both the HPLC-DAD and HPLC/MS methods in reagent water, surface water, and ground water. The average HPLC-DAD recoveries of the chloroacetanilide herbicide metabolites from water samples spiked at 0.25, 0.5 and 2.0 microg/l ranged from 84 to 112%, with relative standard deviations of 18% or less. The average HPLC/MS recoveries of the metabolites from water samples spiked at 0.05, 0.2 and 2.0 microg/l ranged from 81 to 118%, with relative standard deviations of 20% or less. The limit of quantitation (LOQ) for all metabolites using the HPLC-DAD method was 0.20 microg/l, whereas the LOQ using the HPLC/MS method was at 0.05 microg/l. These metabolite-determination methods are valuable for acquiring information about water quality and the fate and transport of the parent chloroacetanilide herbicides in water.  相似文献   

6.
Nitrogen flux and sources in the Mississippi River Basin   总被引:10,自引:0,他引:10  
Nitrogen from the Mississippi River Basin is believed to be at least partly responsible for the large zone of oxygen-depleted water that develops in the Gulf of Mexico each summer. Historical data show that concentrations of nitrate in the Mississippi River and some of its tributaries have increased by factors of 2 to more than 5 since the early 1900s. We have used the historical streamflow and concentration data in regression models to estimate the annual flux of nitrogen (N) to the Gulf of Mexico and to determine where the nitrogen originates within the Mississippi Basin. Results show that for 1980-1996 the mean annual total N flux to the Gulf of Mexico was 1,568,000 t/year. The flux was approximately 61% nitrate as N, 37% organic N, and 2% ammonium as N. The flux of nitrate to the Gulf has approximately tripled in the last 30 years with most of the increase occurring between 1970 and 1983. The mean annual N flux has changed little since the early 1980s, but large year-to-year variations in N flux occur because of variations in precipitation. During wet years the N flux can increase by 50% or more due to flushing of nitrate that has accumulated in the soils and unsaturated zones in the basin. The principal source areas of N are basins in southern Minnesota, Iowa, Illinois, Indiana, and Ohio that drain agricultural land. Basins in this region yield 800 to more than 3100 kg total N/km2 per year to streams, several times the N yield of basins outside this region. Assuming conservative transport of N in the Mississippi River, streams draining Iowa and Illinois contribute on average approximately 35% of the total N discharged by the Mississippi River to the Gulf of Mexico. In years with high precipitation they can contribute a larger percentage.  相似文献   

7.
Pesticides in Portuguese surface and ground waters   总被引:14,自引:0,他引:14  
Pesticides used in Portuguese agricultural areas have been found in surface and ground waters. In the surface water collected in three river basins from 1983 to 1999, insecticides and herbicides were detected from the monitored pesticides, particularly atrazine, chlorfenvinphos (Z+E), alpha- and beta-endosulfan, lindane, molinate and simazine, reaching the maximum values, respectively, of 0.63, 31.6, 0.18 microg/L (alpha-endosulfan), 0.18 microg/L (beta-endosulfan), 0.24, 48 and 0.3 microg/L. In the ground water collected from the wells of seven agricultural areas from 1991 to 1998, several monitored herbicides were detected: alachlor, atrazine, metolachlor, metribuzine and simazine, reaching the maximum concentration values of 13, 30, 56, 1.4 and 0.4 microg/L, respectively. The herbicides more frequently detected were atrazine (64%), simazine (45%) and alachlor (25%). Other than these, the monitored pesticides can be present in Portuguese surface and ground waters. Therefore, to improve the analytical conditions, the use of multiresidue methods and automated techniques are desirable in future work.  相似文献   

8.
Sulfonylurea (SU), sulfonamide (SA), and imidazolinone (IMI) herbicides are relatively new classes of chemical compounds that function by inhibiting the action of a plant enzyme, stopping plant growth, and eventually killing the plant. These compounds generally have low mammalian toxicity, but plants demonstrate a wide range in sensitivity to SUs, SAs, and IMIs with over a 10,000-fold difference in observed toxicity levels for some compounds. SUs, SAs, and IMIs are applied either pre- or post-emergence to crops commonly at 1/50th or less of the rate of other herbicides. Little is known about their occurrence, fate, or transport in surface water or ground water in the USA. To obtain information on the occurrence of SU, SA, and IMI herbicides in the Midwestern United States, 212 water samples were collected from 75 surface-water and 25 ground-water sites in 1998. These samples were analyzed for 16 SU, SA and IMI herbicides by USGS Methods Research and Development Program staff using high-performance liquid chromatography/mass spectrometry. Samples were also analyzed for 47 pesticides or pesticide degradation products. At least one of the 16 SUs, SAs or IMIs was detected above the method reporting limit (MRL) of 0.01 microg/l in 83% of 130 stream samples. Imazethapyr was detected most frequently (71% of samples) followed by flumetsulam (63% of samples) and nicosulfuron (52% of samples). The sum of SU, SA and IMI concentrations exceeded 0.5 microg/l in less than 10% of stream samples. Acetochlor, alachlor, atrazine, cyanazine and metolachlor were all detected in 90% or more of 129 stream samples. The sum of the concentration of these five herbicides exceeded 50 microg/l in approximately 10% of stream samples. At least one SU, SA, or IMI herbicide was detected above the MRL in 24% of 25 ground-water samples and 86% of seven reservoir samples.  相似文献   

9.
Weekly composite air samples were collected from early April through to mid-September 1995 at three paired urban and agricultural sites along the Mississippi River region of the Midwestern United States. The paired sampling sites were located in Mississippi, Iowa, and Minnesota. A background site, removed from dense urban and agricultural areas, was located on the shore of Lake Superior in Michigan. Each sample was analyzed for 49 compounds; of these, 21 of 26 herbicides, 13 of 19 insecticides, and 4 of 4 related transformation products were detected during the study, with most pesticides detected in more than one sample. The maximum number of pesticides detected in an air sample was 18. Herbicides were the predominant type of pesticide detected at every site. Detection frequencies of most herbicides were similar at the urban and agricultural sites in Iowa and Minnesota. In Mississippi, herbicides generally were detected more frequently at the agricultural site. The insecticides chlorpyrifos, diazinon, and carbaryl, which are used in agricultural and non-agricultural settings, were detected more frequently in urban sites than agricultural sites in Mississippi and Iowa. Methyl parathion was detected in 70% of the samples from the Mississippi agricultural site and at the highest concentration (62 ng/m3 air) of any insecticide measured in the study. At the background site, dacthal (100%), atrazine (35%), cyanazine (22%), and the (primarily atrazine) triazine transformation products CIAT (35%) and CEAT (17%) were detected most frequently, suggesting their potential for long-range atmospheric transport.  相似文献   

10.
A survey of the herbicides present in surface and groundwaters was conducted in 1999 in an area of the provinces of Salamanca and Zamora (Central-Western Spain) to assess the degree of pollution of the agricultural land and seasonal changes in the presence of herbicide residues. Ten sites were sampled and screened for 17 herbicides commonly used in the area; the compounds were ureas, triazines, amides, and others. A previously optimised method involving solid-phase extraction with polymeric cartridges, followed by HPLC with diode array detection, was used to monitor the herbicides. Of the 17 compounds examined, eight were found: chlorotoluron (41% of total detections), terbutryn (21%), atrazine (14%), linuron (7%), isoproturon and metolachlor (5.5% each), lenacil (4%) and metamitron (2%). Of the detections, 66% corresponded to river water samples (three sites). The herbicides found in groundwaters (seven sites) were: chlorotoluron, atrazine, terbutryn, linuron, and isoproturon, all of which are classified as probable or transient leachers in Europe. The temporal evolution of the herbicide content in river waters shows that the observed pollution is a function of time and is related to the application and use of the herbicides. By contrast, the pollution found in groundwaters was lower than that seen in surface waters, except that due to chlorotoluron, which, additionally, remained almost constant throughout the study period.  相似文献   

11.
An extensive four-year research program has been carried out to explore and acquire knowledge about the fundamental agricultural practices and processes affecting the mobility and bioavailability of pesticides in soils under semi-arid Mediterranean conditions. Pesticide leaching was studied under field conditions at five different depths using suction cups. Monitoring of metolachlor, alachlor, atrazine, deethylatrazine (DEA), deisopropylatrazine (DIA), and bromide ions in soil water, as well as dye patterns made apparent the significant role of preferential flow to the mobility of the studied compounds. Irrespective to their adsorption capacities and degradation rates, atrazine, metolachlor and bromide ions were simultaneously detected to 160 cm depth. Following 40 mm irrigation, just after their application, both alachlor and atrazine were leached to 160 cm depth within 18 h, giving maximum concentrations of 211 and 199 μg L−1, respectively. Metolachlor was also detected in all depth when its application was followed by a rainfall event (50 mm) two weeks after its application. The greatest concentrations of atrazine, alachlor and metolachlor in soil water were 1795, 1166 and 845 μg L−1, respectively. The greatest concentrations of atrazine’s degradation products (both DEA and DIA) appeared later in the season compared to the parent compound. Metolachlor exhibited the greatest persistence with concentrations up to 10 μg L−1 appearing in soil water 18 months after its application. Brilliant blue application followed by 40 mm irrigation clearly depict multi-branching network of preferential flow paths allowing the fast flow of the dye down to 150 cm within 24 h. This network was created by soil cracks caused by shrinking of dry soils, earthworms and plant roots. Chromatographic flow of the stained soil solution was evident only in the upper 10-15 cm of soil.  相似文献   

12.
Restoration of the Chesapeake Bay, the largest estuary in the United States, is a national priority. Documentation of progress of this restoration effort is needed. A study was conducted to examine water quality in the Choptank River estuary, a tributary of the Chesapeake Bay that since 1998 has been classified as impaired waters under the Federal Clean Water Act. Multiple water quality parameters (salinity, temperature, dissolved oxygen, chlorophyll a) and analyte concentrations (nutrients, herbicide and herbicide degradation products, arsenic, and copper) were measured at seven sampling stations in the Choptank River estuary. Samples were collected under base flow conditions in the basin on thirteen dates between March 2005 and April 2008. As commonly observed, results indicate that agriculture is a primary source of nitrate in the estuary and that both agriculture and wastewater treatment plants are important sources of phosphorus. Concentrations of copper in the lower estuary consistently exceeded both chronic and acute water quality criteria, possibly due to use of copper in antifouling boat paint. Concentrations of copper in the upstream watersheds were low, indicating that agriculture is not a significant source of copper loading to the estuary. Concentrations of herbicides (atrazine, simazine, and metolachlor) peaked during early-summer, indicating a rapid surface-transport delivery pathway from agricultural areas, while their degradation products (CIAT, CEAT, MESA, and MOA) appeared to be delivered via groundwater transport. Some in-river processing of CEAT occurred, whereas MESA was conservative. Observed concentrations of herbicide residues did not approach established levels of concern for aquatic organisms. Results of this study highlight the importance of continued implementation of best management practices to improve water quality in the estuary. This work provides a baseline against which to compare future changes in water quality and may be used to design future monitoring programs needed to assess restoration strategy efficacy.  相似文献   

13.
Haitao Bian  Ping Liu 《Water research》2009,43(14):3566-11185
Chloroacetanilide herbicides are frequently detected in groundwater and surface waters, and pose high risks to aquatic biota. In this study, sodium bisulfite (NaHSO3), a plant growth regulator used in China, was used to remove three chloroacetanilide herbicides including alachlor, acetochlor and S-metolachlor. These herbicides were rapidly dechlorinated by NaHSO3 in neutral conditions. The dechlorination was accelerated with increasing pH, temperature and NaHSO3 concentrations. Kinetic analysis and mass spectrum identification revealed that the reaction followed SN2 nucleophilic substitution, in which the chlorine was replaced by the reactive specie sulfite. Alachlor and its isomer acetochlor had similar reaction rates, whereas they were more readily transformed than S-metolachlor that had larger steric hindrance and weaker electrophilicity. The transformation products were chloroacetanilide ethane sulfonic acids (ESAs), which were also encountered as major metabolites of these herbicides in natural environment via common metabolic pathways and were less toxic to green algae compared to the parent herbicides. These results indicate that NaHSO3 can accelerate transformation of chloroacetanilide herbicides to the less toxic transformation products by nucleophilic substitution and dechlorination in aquatic environment. NaHSO3 can be potentially used for the removal of chloroacetanilide herbicides from wastewater effluent, spill sites and accidental discharge.  相似文献   

14.
The science of hypoxia in the Northern Gulf of Mexico: A review   总被引:3,自引:0,他引:3  
The Mississippi River is one of the world's 10 largest rivers, with average freshwater discharge into the northern Gulf of Mexico (GOM) of 380 km3 year− 1. In the northern GOM, anthropogenic nitrogen is primarily derived from agricultural fertilizer and delivered via the Mississippi River. The general consensus is that hypoxia in the northern Gulf of Mexico is caused primarily by algal production stimulated by excess nitrogen delivered from the Mississippi-Atchafalaya River Basin and seasonal vertical stratification of incoming stream flow and Gulf waters, which restricts replenishment of oxygen from the atmosphere.In this paper, we review the controversial aspects of the largely nutrient-centric view of the hypoxic region, and introduce the role of non-riverine organic matter inputs as other oxygen-consuming mechanisms. Similarly, we discuss non-nutrient physically-controlled impacts of freshwater stratification as an alternative mechanism for controlling in part, the seasonality of hypoxia. We then explore why hypoxia in this dynamic river-dominated margin (RiOMar) is not comparable to many of the other traditional estuarine systems (e.g., Chesapeake Bay, Baltic Sea, and Long Island Sound). The presence of mobile muds and the proximity of the Mississippi Canyon are discussed as possible reasons for the amelioration of hypoxia (e.g., healthy fisheries) in this region. The most recent prediction of hypoxia area for 2009, using the current nutrient-centric models, failed due to the limited scope of these simple models and the complexity of this system. Predictive models should not be the main driver for management decisions. We postulate that a better management plan for this region can only be reached through a more comprehensive understanding of this RiOMar system—not just more information on river fluxes (e.g., nutrients) and coastal hypoxia monitoring programs.  相似文献   

15.
This study establishes an annual watershed (12,762 km(2)) budget of pesticide contamination in the Marne River based on detailed enquiries from farmers' organizations, public services and residents and pesticide usage. Results showed that urban uses were considerably lower (47 tons/yr) than agricultural ones (4300 tons/yr). However, the proportion of the amounts used transferred to surface water, differs considerably between urban and agricultural environments. Transfer from urban uses was estimated from runoff experiments with different surfaces, including concrete, tarmac, sand and gravel, and grass. Transfer coefficients from agricultural uses were derived from the calibrated value previously obtained from a detailed budget established for atrazine, taking into account the specific adsorption capacity (Koc) and half-life time of each substance used. The calculated annual budget shows a similar contribution by urban pesticides in the Marne River due to runoff over impervious surfaces as compared to agricultural pesticides used on cultivated soils (about 11 tons/yr in both cases). These estimates are consistent with data available from analytical surveys concerning pesticide occurrence in the rivers of the Paris region.  相似文献   

16.
Stream discharge and geochemical data were collected at two sites along lower Ashley Creek, Utah, from 1999 to 2003, to assess the success of a site specific salinity and Se remediation project. The remediation project involved the replacement of a leaking sewage lagoon system that was interacting with Mancos Shale and increasing the dissolved salinity and Se load in Ashley Creek. Regression modeling successfully simulated the mean daily dissolved salinity and Se loads (R(2) values ranging from 0.82 to 0.97) at both the upstream (AC1) and downstream (AC2/AC2A) sites during the study period. Prior to lagoon closure, net gain in dissolved-salinity load exceeded 2177 metric tons/month and decreased after remediation to less than 590 metric tons/month. The net gain in dissolved Se load during the same pre-closure period exceeded 120 kg/month and decreased to less than 18 kg/month. Sen's slope estimator verified the statistical significance of the modeled reduction in monthly salinity and Se loads. Measured gain in dissolved constituent loads during seepage tests conducted during September and November 2003 ranged from 0.334 to 0.362 kg/day for dissolved Se and 16.9 to 26.1 metric tons/day for dissolved salinity. Stream discharge and changes in the isotopic values of delta boron-11 (delta(11)B) were used in a mixing model to differentiate between constituent loadings contributed by residual sewage effluent and naturally occurring ground-water seepage entering Ashley Creek. The majority of the modeled delta(11)B values of ground-water seepage were positive, indicative of minimal seepage contributions from sewage effluent. The stream reach between sites S3 and AC2A contained a modeled ground-water seepage delta(11)B value of -2.4 per thousand, indicative of ground-water seepage composed of remnant water still draining from the abandoned sewage lagoons.  相似文献   

17.
Sampling of Long Lake, Washington and its tributaries was continued for additional information to facilitate a reliable understanding of the dynamics that account for the reservoir's eutrophic condition. The sewage effluent from the City of Spokane's primary treatment plant, via the Spokane River, is a major source of nutrients influencing the reservoir's trophic status. Existing loads of nitrogen and phosphate in the river increased in 1973 by 3.86 and 2.36 metric tons day−1, respectively, below the effluent. Of the influent phosphate, 32% was retained in the reservoir. The Spokane River occurred as a density interflow in the reservoir from mid-July to mid-September and effectively isolated a wedge of anoxic, nutrient laden and low conductive water between the dam and 24 km up-reservoir. The river, as an underflow, initiated fall homothermy. The reservoir had a mean retention time of 49 days and effected greater hypolimnetric oxygen depletion and nutrient accumulation than the previous year.  相似文献   

18.
Organic matter-rich agricultural by-products are being produced in huge quantities and can be applied to soil as a disposal strategy. The application of two different rates (2 and 8% w/w) of olive cake to a Mediterranean calcareous soil resulted in an increased sorption of four triazine herbicides, which was higher for the more hydrophobic compounds (terbuthylazine and prometryn) and lower for the more polar ones (simazine and cyanazine). However, when the sorption coefficients were normalised to the total soil organic carbon (K(oc)), the results did not significantly differ between simazine and cyanazine which is an indication that the olive cake did not exert different sorption capacity for both compounds. On the contrary, K(oc) values for terbuthylazine and prometryn increased in the amended soils. Our results from experiments using mixtures of several pesticides suggest that competition for sorption sites resulted in a decrease of herbicide sorption. Desorption was hysteretical both for the amended and unamended soils, but the addition of olive cake at the highest dose diminished desorption of most of the herbicides. In conclusion, the addition of olive cake behaves as a promising method for reducing the risk of groundwater pollution by pesticides.  相似文献   

19.
Eullaffroy P  Vernet G 《Water research》2003,37(9):1983-1990
The use of herbicides constitutes the principal method of weed control but the introduction of these compounds into the aquatic environment (primarily through runoff) may have severe consequences for non-target plants. In this study, we describe a sensitive and inexpensive method for detection of photosynthesis-inhibiting herbicides, based on chlorophyll (Chl) fluorescence emission. Algae exhibited a Chl fluorescence signature with two maxima around 684 and 735 nm, correlated with the total Chl content of the algal suspension. The ratio of these two maxima (i.e. F684/F735) can be used as an indicator of stress in the photosynthetic apparatus, and thus represents a very simple method for in vivo evaluation of the health status of algae. Determination of the F684/F735 fluorescence ratio revealed the presence and phytotoxicity of atrazine, metribuzin, terbuthylazine, diuron, DCPMU, DCPU and paraquat. The toxic effect of these pollutants was estimated by monitoring the increase in the F684/F735 value, which reflects photosystem II and photosystem I photochemistry. We observed a drastic increase in the magnitude of this ratio, correlating quantitatively with herbicide concentration and corresponding to a decline in algal photosynthetic activity. For the tested herbicides affecting photosynthetic electron transport, the magnitude of the effect was as follows: diuron= DCPMU > metribuzin > atrazine > terbuthylazine > paraquat > DCPU. The F684/F735 Chl fluorescence ratio thus gives toxicity responses which compare favourably with tests such as the algal growth inhibition test, and could therefore be used to detect the presence and phytotoxicity of herbicides in aquatic environments.  相似文献   

20.
The persistence of terbuthylazine, simazine, atrazine and prometryn (s-triazine herbicides) was studied in sea, river and groundwaters during long-term laboratory incubation (127 days) under different laboratory conditions (light-darkness at 20 degrees C). Analysis of herbicides was performed by GC-NPD and their identity was confirmed by GC-MSD. A micro on-line method for the isolation of herbicide residues was used. The results showed that light had little effect on the removal of the four herbicides in riverwater but had a marked effect on their removal from sea and groundwater. Surprisingly, this removal appeared to be inversely proportional to the concentration of dissolved organic materials. In general, the degradation order was similar in sea and riverwaters; simazine was the most readily degraded compound (t(1/2)= 29-49 days), while terbuthylazine was the most persistent with the longest half-lives (76-331 days). In groundwater, terbuthylazine also showed greater persistence but prometryn was the compound with a fastest degradation rate, half-lives ranged from 88 days for prometryn to approximately 100 days for the other three compounds in light conditions and 263-366 days for prometryn and terbuthylazine, respectively, in darkness. Only for terbuthylazine was the remaining percentage at the end of the experiment higher than 50% under light conditions in riverwater, while in the other cases, the remaining percentage varied from 7 to 43% for simazine in seawater and atrazine in groundwater, respectively. Finally, a greater persistence was observed in groundwater for the four compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号