首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A novel dual-passband coplanar waveguide (CPW) filter periodically loaded with the composite right/left-handed (CRLH) short-circuited stubs and the quarter-wavelength open-circuited stubs in asymmetric configuration is presented. The unit-cell equivalent circuit of the periodic structure in conjunction with Floquet's theorem is employed to find the propagation characteristics of passband and stopband regions. Unlike the conventional quarter-wavelength transmission-line inverter suitable only for a narrow frequency range, the dual-band inverter is adopted in the dual-passband filter to achieve a better frequency response within two operating bands. The performance of the 2.4/5.8-GHz third-order CRLH CPW dual-passband filter with 52% and 23% bandwidths is measured and validated by full-wave simulation. Two arbitrary passband regions are presented and the stopband within the passbands can be controlled by varying the length of open-circuited stub, supporting the flexibility and compactness of the proposed dual-passband filter  相似文献   

2.
The design and implementation of novel coplanar-waveguide (CPW) bandpass and dual-passband filters that consist of the composite right/left-handed short-circuited stubs are proposed. In contrast to the conventional short-circuited stub, whose input impedance repeats every half-wavelength, the composite right/left-handed CPW stub combines the phase-lead composite right/left-handed CPW and the phase-lag uniform CPW to achieve the arbitrary resonant frequencies with compact size. The equivalent bandpass and dual-passband LC resonators are established by investigating the frequency responses of the composite right/left-handed CPW stubs. The composite right/left-handed CPW bandpass filter is 62.5% more compact than the conventional quarter-wavelength shunt-stub CPW bandpass filter. The composite right/left-handed CPW dual-passband filter, which possesses the sharp rejection between the two asymmetric passbands, is also developed. The synthesis procedures of the composite right/left-handed CPW bandpass and dual-passband filters are successfully validated by measurement and full-wave simulation.  相似文献   

3.
This study proposes an equivalent-circuit model for the composite right/left-handed (CRLH) coplanar waveguide (CPW) comprising the series interdigital capacitor and shunt meandering short-circuited stub inductor in symmetric configuration. The new technique for extracting the equivalent-circuit elements of the CRLH CPW, which include inductances, capacitances, and resistances to represent the left-handed, right-handed, and lossy characteristics, is developed based on the effective medium concept. The applications to the compact resonators and filters are presented to emphasize the unique features of the CRLH CPW. A novel CRLH CPW resonator with a 0/spl deg/ effective electrical length at resonance is proposed, which gives a 49.1% size reduction when compared with the conventional half-wavelength resonator at 5 GHz. Based on the zeroth-order CRLH CPW resonators, an inductively coupled two-pole bandpass filter with 5.4% 3-dB bandwidth and 2.7-dB insertion loss at 5 GHz is implemented, and it is 51.4% more compact than the conventional structure. A good agreement among the results of the full-wave simulation, equivalent-circuit model, published data, and measurement demonstrates the effectiveness of the proposed modeling technique. To suppress the higher order harmonic spurious passbands, the electromagnetic-bandgap CPW structures are incorporated into the proposed CRLH CPW filter.  相似文献   

4.
A wideband composite right/left-handed (CRLH) coplanar waveguide (CPW) coupler with 3-dB coupling value and quadrature phase difference is presented. Compared with the conventional edge-coupled CPW coupler, this symmetrical structure, consisting of a gap capacitor, a broadside-coupled capacitor, and a meandering short-circuited stub inductor, achieves wider operating bandwidth and larger coupling level. The 3-dB CRLH CPW coupler with 0.7mm spacing between coupled lines exhibits an amplitude balance of 2dB and a phase balance of 900 plusmn 50 from 3.2 to 7.6GHz. The coupled-line length and the port impedance of the proposed structure are approximately lambda/4 and 50Omega, respectively, which makes it more compact than the cascaded CRLH microstrip coupled-line coupler. To characterize this structure, the equivalent circuit model including the unique coupling mechanism within CRLH CPWs is established and verified by measurement. The signal with less dispersion on output ports is demonstrated based on the standard deviation of group delay time  相似文献   

5.
Chen  H. Zhang  Y.X. 《Electronics letters》2008,44(16):979-980
A novel and compact dual-band filter using a microstrip/coplanar waveguide (CPW) composite structure is proposed. At the bottom of the substrate material, two CPW open-circuited resonators are broadside-coupled to the top microstrip open-circuited stubs. The proposed filter was designed, fabricated and measured. The obtained frequency responses demonstrated that the filter has good dual-band property.  相似文献   

6.
This work presents a novel coplanar waveguide (CPW) bandpass filter (BPF) that uses electromagnetic bandgap (EBG) resonators to reduce the size and suppress the harmonic responses. The propagation characteristic of the EBG structure is investigated by its associated equivalent circuit model. Compared with the conventional half-wavelength resonator at 5GHz, the EBG resonator is 60.5 % more compact. Based on the EBG CPW resonators, the inductively-coupled two-pole BPF with 3.8% 3-dB bandwidth and 2-dB insertion loss at 5GHz is implemented. This structure generates a 59.6% reduction in size and suppresses a second harmonic passband when compared with a conventional filter. To eliminate the third harmonic response, the proposed EBG CPW BPF further incorporates two EBG structures into its input and output ports and has the merit of a small circuit area  相似文献   

7.
This paper introduces a micromachined thick single-metal-layer high aspect-ratio coplanar waveguide (CPW) wideband bandpass filter with compact unit cells based on the electromagnetic bandgap (EBG) concept. The filter is miniaturized as a result of using the EBG concept in design, and also by realizing high aspect-ratio structures with polymer-based deep X-ray lithography fabrication. Cascaded unit cells in the EBG model consist of capacitive and inductive parallel periodically loaded transmission lines, which determine the filter bandwidth. Compact unit cells are realized by using high aspect-ratio CPW stepped-impedance resonators. The main advantage of this approach is that the high aspect-ratio CPW structures make short unit cells practically realizable, resulting in a compact filter structure. A bandpass filter with 47% bandwidth is designed and fabricated using deep X-ray lithography, and the performance and physical size is compared to a conventional quarter-wavelength-based admittance inverter filter.   相似文献   

8.
A novel ultra wideband (UWB) bandpass filter is presented, using a compact coupled microstrip/coplanar waveguide (CPW) structure. The filter comprises of a single CPW quarter-wavelength resonator which is coupled to two microstrip open-circuited stubs on the other side of a common substrate. The two microstrip open-circuited stubs, which are about a quarter-wavelength long at the center frequency, can function as two resonators with associated coupling arrangement to the CPW. This forms a very compact three-pole filter. The proposed filter also exhibits a quasi-elliptic function response, with one finite-frequency transmission zero closer to each side of the passband. Thus, a high selectivity is achieved using a small number of resonators, which leads to low insertion loss and group delay across the passband. The performance is predicated using EM simulations and verified experimentally. The experimental filter shows a fractional bandwidth of 90% at a center frequency of 6.4GHz, with two observable transmission zeros (attenuation poles) at 1.95 and 10.36GHz, respectively. Furthermore, it has a very small size only amounting to 0.25 by 0.08 guided wavelength at the center frequency  相似文献   

9.
A novel ultra-wideband bandpass filter (BPF) is presented using a back-to-back microstrip-to-coplanar waveguide (CPW) transition employed as the broadband balun structure in this letter. The proposed BPF is based on the electromagnetic coupling between open-circuited microstrip line and short-circuited CPW. The equivalent circuit of half of the filter is used to calculate the input impedance. The broadband microstip-to-CPW transition is designed at the center frequency of 6.85 GHz. The simulated and measured results are shown in this letter.  相似文献   

10.
Simons  R.N. Taub  S.R. 《Electronics letters》1993,29(17):1584-1586
Coplanar waveguide (CPW) and grounded coplanar waveguide (GCPW) radial line double stub resonators are experimentally characterised with respect to stub radius and sector angle. A simple closed-form design equation, which predicts the resonance radius of the stub, is presented. Use of a double stub resonator as a lowpass filter or as a harmonic suppression filter is demonstrated and design rules are given.<>  相似文献   

11.
In this letter, we present a compact ultra-wideband bandpass filter (BPF) with a notch band in the BPF performance by using an embedded open-circuited stub structure. The filter mainly consists of conventional stepped impedance resonator (SIR) as the multiple-mode resonator and two enhanced coupled input/output lines. The bandwidth can be analyzed by using the image-parameter method to obtain the proper dimension of the coupled lines and verified by using electromagnetic (EM) simulation. The embedded open-circuited stub structure in the SIR is used to produce a narrow notched band at 5.8 GHz, which its frequency position and bandwidth can be tuned by its physical parameters. The measured 3 dB fractional bandwidth of 113.8% and narrow notched band with 25 dB rejection is achieved. Good agreement between the EM simulation and measurement is obtained.   相似文献   

12.
This study develops an analytical design methodology for synthesizing dual-passband filters with controllable frequency responses. The novel dual-passband filters are constructed from the artificial lumped-element coplanar waveguide stub whose behavior is equivalent to that of a parallel connection of series LC and shunt LC resonators. To improve the frequency response within two passbands, the impedance matching and the phase and impedance compensations are employed in filter design by attaching additional inductors and capacitors to dual-passband resonators. Two types of filters with significantly different bandwidth and separation of two passbands are implemented and the measured results are very consistent with the theoretical predictions, sufficiently validating the proposed design methodology and filter configuration. The proposed filters realized by artificial lumped-element resonators provide the advantages over conventional dual-passband filters in terms of compact size, spurious dc passband elimination, and deep suppression between two passbands.   相似文献   

13.
A novel coplanar-waveguide (CPW) bandpass filter using a dual-mode resonator is presented in this letter. In the filter, a square-ring is used as the resonator, and a microstrip line stub attached the inner corner of the square-ring is used as the perturbation element. The square-ring and the input/output CPW are constructed on the two sides of a dielectric substrate, respectively. The filter has been investigated numerically and experimentally. Measured result shows that the filter has a minimum insertion loss of 1.2dB in its passband and an out-of-band rejection level of -45dB.  相似文献   

14.
The one-dimensional (1-D) periodic electromagnetic bandgap (EBG) structure for the finite-width conductor-backed coplanar waveguide (FW-CBCPW) is proposed. Unlike the conventional EBG structures for the microstrip line and the coplanar waveguide (CPW), which are typically placed on one of the signal strips and the ground plane, this EBG cell is etched on both the signal strip and the upper ground plane of FW-CBCPW resulting in a novel circuit element. The equivalent circuit is also used to model the EBG cell. Measured and full-wave simulated results show that the cell exhibits remarkable stopband effect. The low-pass filter with lower cutoff frequency and wider rejection bandwidth is constructed from a serial connection of the EBG cells. The effect of back metallization on the guiding characteristic is also discussed. Compared to the published EBG cells, the proposed structure has the advantages of relative flexibility, higher compactness, lower radiation loss, and easier integration with the uniplanar circuits  相似文献   

15.
A small-size zeroth-order resonating antenna based on a composite right/left-handed transmission line (CRLH TL) fabricated on high resistivity silicon substrate using coplanar waveguides (CPW) is proposed. The CRLH TL consists of a series of CPW interdigital capacitors and parallel short-ended CPWs. The predicted and experimental results for return loss, gain and radiation pattern are in very good agreement.  相似文献   

16.
Infinite 2D periodic EBG structures from coaxial metal cylinders placed in a planar waveguide are investigated. Short-circuited and open-circuited metal cylinders forming, respectively, short-circuited and open-circuited sections of coaxial transmission lines are considered. It is shown that, by varying the lengths of these coaxial lines, it is possible to create defects in EBG structures that form regular waveguides. The eigenmodes of such waveguides are studied. It is shown that the EBG structures formed from coaxial metal cylinders can be used as the base for the development of multifunction microwave devices.  相似文献   

17.
A novel coplanar waveguide (CPW) low pass filter based on electromagnetic bandgaps (EBG) with double periodicity has been designed and fabricated. The device consists on a CPW with T-shaped loading capacitances at periodic positions and slot width modulation. By properly choosing the ratio between the two periods of the structure, a huge band gap (more than five times the bandwidth) is obtained through the suppression of spurious frequencies. The fabricated prototypes also exhibit very sharp cutoff, very low insertion loss in the passband and slow wave effect.  相似文献   

18.
A Coplanar Stripline Ultra-Wideband Bandpass Filter With Notch Band   总被引:1,自引:0,他引:1  
In this letter, a design of a compact coplanar stripline ultra-wideband bandpass filter with a narrow rejection band is reported. The filter characteristic is obtained by using stepped impedance open-circuited series stubs. It is shown that the rejection band can be placed at a desired frequency by tuning the width of the high impedance section of the series stub. Full-wave simulated and experimental results of a filter prototype are presented.   相似文献   

19.
基于并联短截线谐振器与联接线变换器构成的传统微带带通滤波结构,提出了一种工作在S波段的改进型宽带带通滤波器。以三阶结构为例,通过将两侧并联短截线进行弯折,形成耦合线结构;将中间并联短截线进行拆分,变为并联的短路线和开路线,实现了在通带性能基本不变的前提下,获得阻带可调控的传输零点,进而提高过渡带陡峭度。为了进一步抑制阻带,在滤波器两侧级联扇形微带低通滤波结构,改善阻带性能。利用ADS和HFSS仿真软件对滤波器结构进行仿真优化设计,并最终进行了实物加工和测试。实测结果表明,通带内2~4 GHz插入损耗小于0.7 dB,回波损耗大于17 dB,通带外4.6~6.5 GHz 阻带抑制达到20 dB 以上。  相似文献   

20.
包建晔 《微波学报》2018,34(3):84-87
提出了新型的微波低通滤波器结构,利用人工电磁谐振结构的基本特性,当谐振单元的结构尺寸满足一定条件时,会产生带隙特性,阻带的频率宽度和抑制深度随着谐振器的阶数而变化,由此也会增大电路的结构尺寸。为了改善电磁带隙结构的频率响应特性,将周期性谐振单元在基板两侧对称分布,并通过在传输线上添加开路枝节谐振器和马刺线结构来增加传输零点,从而增大阻带频率宽度和带内抑制深度。同时,将渐变理论应用于电磁带隙结构以改善通带波纹系数。与传统电磁带隙结构相比,所设计的改进型电磁带隙结构既可以改善频域传输特性,又可以减小电路尺寸。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号