首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neurotrophins play an essential role in sensory development by providing trophic support to neurons that innervate peripheral targets. Nerve growth factor (NGF), neurotrophin-3, neurotrophin-4, and brain-derived neurotrophin exert their survival effect by binding to two transmembrane receptor types: trk receptors, which exhibit binding specificity, and the p75NTR receptor, which binds all neurotrophins. To determine how target-derived neurotrophins affect sensory neuron development and function, we used transgenic mice that overexpress NGF in the skin to examine the impact of NGF overexpression on receptor expression. Previous studies of trk expression in trigeminal ganglia of adult NGF transgenics showed that the percentage of trkA neurons doubled and their number increased fivefold. The present study focused on the p75 receptor and shows that the percentage of neurons expressing p75NTR also increase in NGF ganglia, but only by 10%. This increase did not encompass the small, BS-IB-4 isolectin-positive cells as they remained p75 negative in transgenic ganglia. Interestingly, levels of trkA protein were not increased on a per-cell level, whereas levels of p75NTR increased nearly threefold. These results show that in sensory systems, target-derived NGF modulates the level of p75NTR receptor expression, and in so doing, may act to regulate the formation of functional receptor complexes and subsequent trophic action.  相似文献   

2.
Expression of trk receptors is a major determinant of neurotrophin responsiveness of sensory neurons. Although it has been apparent for some time that subpopulations of dorsal root and trigeminal ganglion neurons respond in vitro to each of the members of the neurotrophin family, the extent to which functionally distinct subclasses of sensory neurons are dependent on the actions of different neurotrophins for their development and function remains an active area of investigation. One step towards elucidating the role of various neurotrophins in development and function of sensory neurons has been to examine the distribution of trk receptors on sensory neurons. These studies have clearly revealed that members of the trk family are differentially expressed in functionally distinct populations of both developing and mature sensory neurons and, further, have provided evidence consistent with a shift in neurotrophin responsiveness during the development of sensory neurons.  相似文献   

3.
Neurotrophins such as nerve growth factor (NGF) regulate neuronal survival during development and are neuroprotective in certain models of injury to both the peripheral and the central nervous system. Although many effects of neurotrophins involve long-term changes in gene expression, several recent reports have focused on rapid effects of neurotrophins that do not involve synthesis of new gene products. Because enhanced formation of reactive oxygen species (ROS) represents one consequence of many insults that produce neuronal death, we hypothesized that neurotrophins might influence neuronal function and survival through acute alterations in the production of ROS. Using an oxidation-sensitive compound, dihydrorhodamine, we measured ROS formation in a central nervous system-derived neuronal cell line (GT1-1 trk) and in superior cervical ganglion neurons, both of which express the transmembrane NGF receptor tyrosine kinase, trkA. There was enhanced production of ROS in both cell types in the absence of NGF that was rapidly inhibited by application of NGF; complete inhibition of ROS generation in GT1-1 trk cells occurred within 10 min. NGF suppression of ROS formation was prevented by PD 098059, a specific inhibitor of MEK (mitogen/extracellular receptor kinase, which phosphorylates mitogen-activated protein kinase). The observation that NGF acutely blocks ROS formation in neurons through activation of the mitogen-activated protein kinase pathway suggests a novel mechanism for rapid neurotrophin signaling, and has implications for understanding neuroprotective and other effects of neurotrophins.  相似文献   

4.
We investigated the retrograde axonal transport of 125I-labeled neurotrophins (NGF, BDNF, NT-3, and NT-4) from the sciatic nerve to dorsal root ganglion (DRG) sensory neurons and spinal motor neurons in normal rats or after neuronal injury. DRG neurons showed increased transport of all neurotrophins following crush injury to the sciatic nerve. This was maximal 1 day after sciatic nerve crush and returned to control levels after 7 days. 125I-BDNF transport from sciatic nerve was elevated with injection either proximal to the lesion or directly into the crush site and after transection of the dorsal roots. All neurotrophin transport was receptor-mediated and consistent with neurotrophin binding to the low-affinity neurotrophin receptor (LNR) or Trk receptors. However, transport of 125I-labeled wheat germ agglutinin also increased 1 day after sciatic nerve crush, showing that increased uptake and transport is a generalized response to injury in DRG sensory neurons. Spinal cord motor neurons also showed increased neurotrophin transport following sciatic nerve injury, although this was maximal after 3 days. The transport of 125I-NGF depended on the expression of LNR by injured motor neurons, as demonstrated by competition experiments with unlabeled neurotrophins. The absence of TrkA in normal motor neurons or after axotomy was confirmed by immunostaining and in situ hybridization. Thus, increased transport of neurotrophic factors after neuronal injury is due to multiple receptor-mediated mechanisms including general increases in axonal transport capacity.  相似文献   

5.
Exposure to stressful events and elevated level of stress hormones are associated with impaired spatial memory and neuronal damage in the hippocampus. These neurons are considered to be maintained by neurotrophins such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) and trk family of neurotrophin receptors. Male Wistar rats (6 weeks old) were exposed to immobilization stress for 8 h and their brains were processed for in situ hybridization histochemistry. Exposure to long-lasting immobilization stress reduced mRNA levels for neurotrophins and their high affinity receptors in the brain, especially in the hippocampus. Our results provide, some new information that may be relevant to the pathogenesis of stress-induced disturbances of memory and learning.  相似文献   

6.
Expression of trk family genes are prognostic indicators of neuroblastoma. However, the functional role of neurotrophins and their receptors in neuroblastomas in vivo is still unclear. We studied the expression of neurotrophin receptors (trk-A, trk-B, trk-C) and their responsiveness to neurotrophins (NGF, BDNF, NT-3) in 25 human neuroblastomas using a primary culture system. The tumours in early stages and stage 4s responded to both NGF and NT-3, but not to BDNF, by surviving and differentiating terminally and the responsiveness was correlated with high levels of trk-A, especially the neuronal isoform. However, in many advanced stage tumours, the expression of trk-A was down-regulated and the response pattern to neurotrophins was diverse, without showing terminal differentiation. Interestingly, a stage 4 tumour with MYCN amplification which expressed high level of neuronal trk-A was dependent on nerve growth factor (NGF) for both survival and differentiation in primary culture. The results suggest that the NGF/trk-A signalling may be the main regulatory pathway for differentiation and survival of neuroblastoma in vivo and that trk-A overexpression may overcome aggressiveness, even of the tumour with MYCN amplification.  相似文献   

7.
The localization of the neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-4 (NT-4), and neurotrophin-3 (NT-3) was demonstrated immunohistochemically in discrete neuronal subsets of the human trigeminal ganglion at ages ranging from 23 weeks of gestation to adulthood. Neurotrophin-containing subpopulations partially overlapped with each other and with those immunoreactive for the relevant trk receptor. Glial elements could also be immunostained, labelled satellite cells being particularly abundant in NT-3 stained sections. These results suggest that the neurotrophins are of functional significance for the human trigeminal primary sensory neurones throughout life. Their localization in the ganglion cellular components supports their function as target-derived trophic factors and as molecules effective in autocrine/paracrine interactions.  相似文献   

8.
Previous studies have suggested that the neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are neuroprotective or neurotrophic for certain subpopulations of hippocampal neurons following various brain insults. In the present study, the expression of BDNF and NT-3 mRNAs in rat hippocampus was examined after traumatic brain injury. Following lateral fluid percussion (FP) brain injury of moderate severity (2.0-2.1 atm) or sham injury, the hippocampi from adult rats were processed for the in situ hybridization localization of BDNF and NT-3 mRNAs using 35S-labeled cRNA probes at post-injury survival times of 1, 3, 6, 24 and 72 h. Unilateral FP injury markedly increased hybridization for BDNF mRNA in the dentate gyrus bilaterally which peaked at 3 h and remained above control levels for up to 72 h post-injury. A moderate increase in BDNF mRNA expression was also observed bilaterally in the CA3 region of the hippocampus at 1, 3, and 6 h after FP injury, but expression declined to control levels by 24 h. Conversely, NT-3 mRNA was significantly decreased in the dentate gyrus following FP injury at the 6 and 24 h survival times. These results demonstrate that FP brain injury differentially modulates expression of BDNF and NT-3 mRNAs in the hippocampus, and suggest that neurotrophin plasticity is a functional response of hippocampal neurons to brain trauma.  相似文献   

9.
Sympathetic axons invade the trigeminal ganglia of mice overexpressing nerve growth factor (NGF) (NGF/p75(+/+) mice) and surround sensory neurons having intense NGF immunolabeling; the growth of these axons appears to be directional and specific (). In this investigation, we provide new insight into the neurochemical features and receptor requirements of this sympathosensory sprouting. Using double-antigen immunohistochemistry, we demonstrate that virtually all (98%) trigeminal neurons that exhibit a sympathetic plexus are trk tyrosine kinase receptor (trkA)-positive. In addition, the majority (86%) of those neurons enveloped by sympathetic fibers is also calcitonin gene-related peptide (CGRP)-positive; a smaller number of plexuses (14%) surrounded other somata lacking this neuropeptide. Our results show that sympathosensory interactions form primarily between noradrenergic sympathetic efferents and the trkA/CGRP-expressing sensory somata. To assess the contribution of the p75 neurotrophin receptor (p75(NTR)) in sympathosensory sprouting, a hybrid strain of mice was used that overexpresses NGF but lacks p75(NTR) expression (NGF/p75(-/-) mice). The trigeminal ganglia of NGF/p75(-/-) mice, like those of NGF/p75(+/+) mice, have increased levels of NGF protein and display a concomitant ingrowth of sympathetic axons. In contrast to the precise pattern of sprouting seen in the ganglia of NGF/p75(+/+) mice, sympathetic axons course randomly throughout the ganglionic neuropil of NGF/p75(-/-) mice, forming few perineuronal plexuses. Our results indicate that p75(NTR) is not required to initiate or sustain the growth of sympathetic axons into the NGF-rich trigeminal ganglia but rather plays a role in regulating the directional patterns of axon growth.  相似文献   

10.
Nerve growth factor (NGF) binds to two cell surface receptors, p140trk and p75NGFR, which are both expressed in responsive sensory, sympathetic, and basal forebrain cholinergic neurons. While p140trk belongs to the family of receptor tyrosine kinases, p75NGFR is a member of the TNF/Fas/CD40/CD30 family of receptors. Current views of neurotrophin receptor function have tended to interpret p140trk as the high affinity NGF-binding site. To assess if the binding of NGF to p140trk was distinguishable from binding to high affinity sites on neuronal cells, PC12 cell sublines were generated which expressed p140trk alone, or coexpressed both p140trk and p75NGFR. Kinetic analysis of 125I-NGF binding indicates that it has an unusually slow rate of association with p140trk (k + 1 = 8 x 10(5) M-1 s-1). When both p140trk and p75NGFR receptors are coexpressed, the rate of association of NGF is increased 25-fold to produce a higher affinity binding site. An increase in the rate of internalization was also observed. Since high affinity binding and internalization are believed to be prerequisite for the biological activities of NGF, these results suggest that the biological effects by NGF are derived from a novel kinetic binding site that requires the expression of both receptors. The implications of these results with respect to multisubunit polypeptide receptors are discussed.  相似文献   

11.
The impact of null mutations of the genes for the NGF family of neurotrophins and their receptors was examined among the wide variety of medium to large caliber myelinated mechanoreceptors which have a highly specific predictable organization in the mystacial pad of mice. Immunofluorescence with anti-protein gene product 9.5, anti-200-kDa neurofilament protein (RT97), and anti-calcitonin gene-related product was used to label innervation in mystacial pads from mice with homozygous null mutations for nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), the three tyrosine kinase receptors (trkA, trkB, trkC), and the low-affinity nerve growth factor receptor p75. Specimens were sacrificed at birth and at 1, 2, and 4 weeks for each type of mutation as well as at 11 weeks and 1 year for p75 and trkC mutations, respectively. Our results demonstrate several major concepts about the role of neurotrophins in the development of cutaneous mechanoreceptors that are supplied by medium to large caliber myelinated afferents. First, each of the high-affinity tyrosine kinase receptors, trkA, trkB, and trkC, as well as the low-affinity p75 receptor has an impact on at least one type of mechanoreceptor. Second, consistent with the various affinities for particular trk receptors, the elimination of NGF, BDNF, and NT-3 has an impact comparable to or more complex than the absence of their most specific high-affinity receptors: trkA, trkB, and trkC, respectively. These complexities include potential NT-3 signaling through trkA and trkB to support some neuronal survival. Third, most types of afferents are dependent on a different combination of neurotrophins and receptors for their survival: reticular and transverse lanceolate afferents are dependent upon NT-3, NGF, and trkA; Ruffini afferents upon BDNF and trkB; longitudinal lanceolate afferents upon NGF, trkA, BDNF, and trkB; and Merkel afferents on NGF, trkA, NT-3, trkC, and p75. NT-4 has no obvious detrimental impact on the mechanoreceptor development in the presence of BDNF. Fourth, NT-4 and BDNF signaling through trkB may suppress Merkel innervation and NT-3 signaling through trkC may suppress Ruffini innervation. Finally, regardless of the neurotrophin/receptor dependency for afferent survival and neurite outgrowth, NT-3 has an impact on the formation of all the sensory endings. In the context of these findings, indications of competitive and suppressive interactions that appear to regulate the balance of innervation density among the various sets of innervation were evident.  相似文献   

12.
The protocol presented here details a technique which enables the neurotrophins nerve growth factor (NGF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), and brain-derived neurotrophic factor (BDNF) to be labelled using 125I and the bioactivity of these labelled proteins determined using an in vivo bioassay. We have found that the simplest and most effective method for 125I-labelling of neurotrophic factors is the IODO-GEN method. Following the iodination of neurotrophins it must be established that the labelling procedure has not affected the biological activity of the protein. Traditional methods of assaying the bioactivity of 125I-labelled neurotrophins have several disadvantages and a much easier protocol to use is the retrograde axonal transport of these proteins in sympathetic and sensory neurons of adult mice. High specific activity 125I-labelled neurotrophin, to which known amounts of unlabelled neurotrophin are added, is injected into the right anterior eye chamber of adult mice under anaesthetic and the animals are left to recover for 16 h, after which they are sacrificed and both superior cervical ganglia (SCG) and trigeminal ganglia (TGG) are removed. The accumulated radioactivity in each ganglion is determined using a gamma-counter and the amount of neurotrophin transported is calculated by subtracting the counts obtained on the non-injected side from those present on the injected side. By comparing the amount of protein injected with the amount transported, the specific activity of the bioactive labelled neurotrophin can be determined.  相似文献   

13.
Vertebrate kidney development involves a series of complex interactions between the ureteric bud and undifferentiated mesenchyme resulting in the production of the nephron unit. These interactions are thought to be dependent on a variety of locally derived soluble factors, including peptide growth factors and their receptors. We have extensively analyzed the neurotrophins (NT) and their receptors during human kidney development. The neurotrophin receptors p75 and trk were both present within cells of early glomerular/tubular structures but absent from uninduced mesenchyme. Later in organogenesis, the NTs NT-3 and BDNF colocalized with their respective receptors in differentiated tubules. These findings suggested that the NT:receptor complex was not involved in the early inductive events of renal development but was responsible for postinductive tubulogenesis and epithelial integrity. In situ hybridization confirmed selective localization for the expression of trk B and trk C receptors and Western blot identified a full-length (kinase-active) trk receptor during human kidney development.  相似文献   

14.
The interaction of ethanol and neurotrophin-mediated cell survival was examined in primary cultures of cortical neurons. Cells were obtained from rat fetuses on gestational day 16 and maintained in a medium supplemented with either 10% or 1.0% fetal calf serum (FCS). Exogenous nerve growth factor (NGF; 20 ng/ml), brain-derived neurotrophic factor (BDNF; 20 ng/ml) or neurotrophin 3 (NT-3; 20 ng/ml) was added to the cultures alone, or in combination with ethanol (400 mg/dl). The number of viable neurons was determined after a 48 h treatment with a growth factor and/or ethanol. The effects of ethanol on the expression of high affinity neurotrophin receptors (trkA, trkB, and trkC) and the low-affinity receptor (p75), were analyzed using Western immunoblots. In untreated cultures, 22.7% and 26.3% of the cells raised in a medium containing 10% and 1.0% FCS, respectively, were lost. Only NGF prevented the death of the cultured cortical neurons. Ethanol was toxic; it caused a 23.5% and 16.7% loss of cells (for cells grown in a medium containing 10% and 1.0% FCS, respectively) beyond that occurring 'naturally' in an untreated culture. Ethanol completely blocked the NGF-mediated cell survival. In general, BDNF and NT-3 did not offset the toxic effect of ethanol. Immunoblotting studies showed that the expression of p75 was significantly (p < 0.05) lower (40%) in ethanol-treated cultures, but ethanol did not affect trk expression. Thus, ethanol has specific effects upon NGF-mediated cell survival and the effects on the low affinity receptor imply that p75 specifically plays an important role in NGF signaling.  相似文献   

15.
The neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT3), and neurotrophin-4 (NT4) are crucial target-derived factors controlling the survival of peripheral sensory neurons during the embryonic period of programmed cell death. Recently, NT3 has also been found to act in a local manner on somatic sensory precursor cells during early development in vivo. Culture studies suggest that these cells switch dependency to NGF at later stages. The neurotrophins acting on the developing placode-derived visceral nodose/petrosal (N/P) ganglion neurons are BDNF, NT3, and NT4. To assess their roles in development, we analyzed embryonic development in mice carrying a deletion in each of these genes, or combinations of them, and found that they are essential in preventing the death of N/P ganglion neurons during different periods of embryogenesis. Both NT3 and NT4 are crucial during the period of ganglion formation, whereas BDNF acts later in development. Many, but not all, of the NT3- and NT4-dependent neurons switch to BDNF at later stages. We conclude that most of the N/P ganglion neurons depend on more than one neurotrophin and that they act in a complementary as well as a collaborative manner in a developmental sequence for the establishment of a full complement of visceral neurons.  相似文献   

16.
17.
1. The protein family of the neurotrophins, consisting of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and Neurotrophin-3, -4/5, and -6 (NT-3; NT-4/5; NT-6) is well known to enhance the survival and to stabilize the phenotype of different populations of neurons in the central and the peripheral nervous system. These effects are mediated via binding to specific tyrosine kinase receptors (Trks) and to the low-affinity p75 neurotrophin receptor. 2. The neurotrophins NGF, BDNF, and NT-3 and the BDNF and NT-3 selective receptors (TrkB, TrkC) are expressed at high levels in neurons of the basal forebrain, the hippocampus, and the neocortex of the mammalian brain. The expression and secretion of NGF and BDNF in these brain areas is regulated by (physiological levels of) neuronal activity. 3. Exogenous application of the neurotrophins to hippocampal and neocortical neurons can enhance excitatory glutamatergic synaptic transmission via activation of Trk receptors. In addition, long-term potentiation (a potential cellular correlate for learning and memory formation in mammals) in the rodent hippocampus depends on endogenous supply of neurons with BDNF. 4. Judged by the analysis of electrophysiological data, the BDNF- and NT-3-induced enhancement of glutamatergic synapses is mediated by increasing the efficacy of glutamate release from the presynaptic neuron. However, neurotrophin-dependent postsynaptic enhancement of NMDA (but not AMPA) receptor responsiveness has also been shown. 5. On the molecular level, neither the pre- nor the postsynaptic modulation of glutamatergic synapses by neurotrophins is well understood. However, neurotrophins were shown to acutely affect intraneuronal Ca2+ levels and to influence molecular components of the transmitter release machinery, which could underly the presynaptic modifications, whereas BDNF-induced phosphorylation of NMDA-type glutamate receptors could account for the postsynaptic effects. 6. Taken together, these results suggest that the activity-dependent release of neurotrophins at frequently used synapses could modulate the synaptic efficacy at these junctions. Thus, neurotrophins might operate as locally released feedback modulators of synaptic transmission, and this could be a cellular correlate for certain aspects of information processing in the mammalian brain.  相似文献   

18.
The function of truncated trkB receptors during nervous system plasticity and regeneration is currently unknown. The extensive nonneuronal localization of truncated trkB-T1 receptors, coupled with their up-regulation by CNS glial cells in response to injury, has led to the speculation that these receptors may sequester BDNF and NT-4/5 to reduce their local availability and, thus, limit axonal sprouting. Conversely, trkB-T1 receptors could bind and present neurotrophins to injured axons and facilitate their regeneration in a manor analogous to that proposed for p75(NTR) receptors on Schwann cells. To address this issue, we used an in vitro coculture paradigm in which wild-type 3T3 NIH fibroblasts or two different 3T3 cell clones stably expressing trkB-T1 receptors served as monolayer substrates upon which to evaluate the effect of trkB-T1 receptors on nonneuronal cells to influence neurotrophin (NGF, BDNF, NT-3, and NT-4/5)-induced neurite outgrowth from retinoic acid (RA)-treated SY5Y neuroblastoma cells. In these experiments, BDNF and NT-4/5 produce a strong phosphorylation of trk receptors on the RA-SY5Y cells and induce differentiation of the SY5Y cells (as measured by the development of neurofilament-positive neuritic processes). This ability of the trkB ligands to stimulate neurite outgrowth is dose dependent since increasing concentrations of BDNF (5, 25, and 100 ng/ml) result in an increased percentage of SY5Y cells developing neurites and in progressively longer neurites from SY5Y cells on the control 3T3 monolayers. In these experiments, BDNF and NT-4/5 induce the strongest neurite outgrowth, followed by NT-3 and then NGF. When trkB-T1 receptors are present on the 3T3 cell substratum both BDNF- and NT-4/5-induced neurite extension from the SY5Y cells are strongly inhibited. In contrast, NGF-induced neurite growth is unaffected and NT-3-associated growth is somewhat reduced. These results suggest that the inhibitory effect of the trkB-T1 receptors on the nonneuronal cell substrates is selective for neurite outgrowth that is mediated via the trkB-kinase receptors on the neuroblastoma cells. This ability of trkB-T1 receptors on the nonneuronal substratum to inhibit BDNF-induced neurite outgrowth can be overcome by the addition of high concentrations of BDNF (1 microg/ml). Binding assays using 125I-BDNF suggest that this inhibitory effect could be mediated via binding and internalization of BDNF by the trkB-T1 receptors on the 3T3 cells. These results provide strong support for the hypothesis that the up-regulation of trkB-T1 receptors on astrocytes following CNS lesions enhances the sequestration of the trkB ligands, BDNF and NT- 4/5, at the site of reactive gliosis and, thus, contributes to the inhibition of CNS axonal regeneration from neurons expressing trkB-kinase receptors by removing their ligands from the extracellular environment.  相似文献   

19.
Neurotrophins signal through Trk tyrosine kinase receptors and the low-affinity neurotrophin receptor p75(NTR). We have shown previously that activation of Trk A tyrosine kinase activity can inhibit p75(NTR)-dependent sphingomyelin hydrolysis, that caveolae are a localized site for p75(NTR) signaling, and that caveolin can directly interact with p75(NTR). The ability of caveolin to also interact with tyrosine kinase receptors and inhibit their activity led us to hypothesize that caveolin expression may modulate interactions between neurotrophin signaling pathways. PC12 cells were transfected with caveolin that was expressed efficiently and targeted to the appropriate membrane domains. Upon exposure to nerve growth factor (NGF), caveolin-PC12 cells were unable to develop extensive neuritic processes. Caveolin expression in PC12 cells was found to diminish the magnitude and duration of Trk A activation in vivo. This inhibition may be due to a direct interaction of caveolin with Trk A, because Trk A co-immunoprecipitated with caveolin from Cav-Trk A-PC12 cells, and a glutathione S-transferase-caveolin fusion protein bound to Trk A and inhibited NGF-induced autophosphorylation in vitro. Furthermore, the in vivo kinetics of the inhibition of Trk A tyrosine kinase activity by caveolin expression correlated with an increased ability of NGF to induce sphingomyelin hydrolysis through p75(NTR). In summary, our results suggest that the interaction of caveolin with neurotrophin receptors may have functional consequences in regulating signaling through p75(NTR) and Trk A in neuronal and glial cell populations.  相似文献   

20.
We have studied the postnatal expression of neurotrophins, their cognate high-affinity trk receptors and the low-affinity NGF receptor (p75LNGFR) in the rat adrenal gland using RT-PCR. Neurotrophin mRNAs were detectable during the whole postnatal period. Strongest signals were obtained for BDNF and NT4/5. Expression of trkA, trkB, trkC and p75LNGFR was found at all ages studied. Signals for trkA were highest in the adult adrenal medulla, whereas signals for p75LNGFR were highest in the adult adrenal cortex. Cur data suggest still largely enigmatic roles for neurotrophins in functions of the adrenal medulla and possibly also the cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号