首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
研究了一种金属/有机物/金属夹层结构有机薄膜器件的可逆电双稳特性.器件的阳极和阴极分别为真空热蒸发沉积的Ag和Al薄膜,中间介质层为真空热蒸发沉积的2-(hexahydropyrimidin-2-ylidene)-malononitrile(HPYM)有机薄膜.器件起始状态为非导通态,在大气环境下,可用正、反向电场进行信号的写入和擦除,表现为极性记忆特性.通过自然氧化的方法在底电极Al表面形成一层Al2O3薄膜层后,可使器件在不同的正向电压脉冲作用下达到不同的导电态,具有一定的多重态存储特性.同时,研究了不同的电极组合对器件电性能的影响,并通过紫外-可见吸收光谱以及喇曼光谱对器件界面进行表征.  相似文献   

2.
研究了有机交叉点存储器件中,有机物与电极界面化学反应形成的纳米颗粒对电学特征的影响. 器件的阳极和阴极分别为氧化铟锡(ITO)导电玻璃和真空热蒸发沉积的Al薄膜,有机半导体层为真空热蒸发沉积的2-amino-4,5-dicyanoimidazole (AIDCN) 薄膜. 通过透射电子显微镜(TEM)和X光电子能谱(XPS)测量,在AIDCN/ITO界面上发现SnOx纳米颗粒形成,并证明此纳米颗粒的形成是由于ITO中的高价氧化锡和AIDCN之间的固相反应,纳米颗粒中的Sn元素主要是从ITO表面的锡富集层中析出. 研究证明了界面上纳米颗粒的形成是器件双稳态现象的关键,用这种方式制成的交叉点结构的三层有机存储器件其开关比达到1E8~1E11.  相似文献   

3.
研究了有机交叉点存储器件中,有机物与电极界面化学反应形成的纳米颗粒对电学特征的影响.器件的阳极和阴极分别为氧化铟锡(ITO)导电玻璃和真空热蒸发沉积的~薄膜,有机半导体层为真空热蒸发沉积的2-amino-4,5-dicyanoimidazole(AlDcN)薄膜.通过透射电子显微镜(TEM)和X光电子能谱(XPS)测量,在AIDCN/ITO界面上发现SnOx纳米颗粒形成,并证明此纳米颗粒的形成是由于ITO中的高价氧化锡和AIDCN之间的固相反应,纳米颗粒中的Sn元素主要是从ITO表面的锡富集层中析出.研究证明了界面上纳米颗粒的形成是器件双稳态现象的关键,用这种方式制成的交叉点结构的三层有机存储器件其开关比达到107~1011.  相似文献   

4.
采用原子层沉积技术制备Al2O3薄膜作为InSb材料介电层,制备了MIS器件,研究了金属化后不同退火温度对界面特性的影响.利用C-V测试表征了MIS(metal-insulator-semiconductor)器件的界面特性,结果表明Al2O3介电层引入了表面固定正电荷,200℃和300℃退火处理可有效减小慢界面态密度...  相似文献   

5.
Al2O3薄膜常用于有机电子器件的稳定化封装.除了薄膜的水气渗透率特性,薄膜的表面粗糙度、润湿性和折射率等性能也会影响薄膜的最终封装效果.采用自制等离子增强原子层沉积(PE-ALD)系统在低温下成功制备了Al2O3薄膜,研究了沉积功率和退火参数对Al2O3薄膜微观形貌和性能的影响.结果表明,Al2O3薄膜的生长速率和折射率随沉积功率的增加分别呈现先增加后下降和不断增加的趋势,当沉积功率为1 800 W时,薄膜的线性生长速率达到0.27 nm/cycle,远高于传统热原子层沉积技术的沉积速率.退火处理不会改变Al2O3薄膜晶态,但改善了薄膜的表面粗糙度,降低了接触角和有机基团红外强度.得到了最佳的PE-ALD薄膜制备工艺条件,实现了对有机发光二极管器件的有效封装.  相似文献   

6.
通过激光分子束外延(LMBE)和热蒸发技术制备了基于ZnS纳米薄膜的Al/ZnS/ITO/玻璃器件,通过原子力显微镜(AFM)对ZnS表面薄膜形貌进行表征,采用Keithley 2400测量其电学特性,分别研究了扫描电压、ZnS薄膜厚度及不同温度的退火处理对器件电学特性的影响。实验结果表明:在不同的扫描电压作用下,器件均表现出稳定的负微分电阻特性,且其阻值随扫描电压的变化呈现出高低电阻两种状态,器件具有明显的记忆特性。适当减小ZnS薄膜的厚度或对器件进行400℃退火处理,均可有效减小低阻态的阻值,提高器件的峰-谷电流比率,进而优化器件的记忆特性。最后,基于能谷散射理论,对器件的负微分电阻特性进行了合理解释,理论和实验结果吻合较好。  相似文献   

7.
0100168不同电极对蓝光有机电致发光器件性能的影响[刊]/李枫红//发光学报.—2000.21(3).—265~268(E)利用高真空多源型有机分子沉积系统分别制备了不同负电极为 Al、LiF/Al 和 Mg:Ag 的有机小分子多层电致发光器件,比较了不同负极对以五苯基环戊二烯(PPCP)为发光层的蓝光有机电致发光器件性能的影响,发现以 LiF/Al 作负极的器件在综合性能上优于其它器件。其中器件 ITO/TPD/PPCP/Alq/LiF/Al 蓝光发射的最大发光亮度达2375cd/m~2,最大发光效率为0.261m/W。参9  相似文献   

8.
钟志有  孙奉娄 《半导体光电》2007,28(5):631-633,637
采用空热蒸发技术制备了结构为ITO/N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl)-benzidine (NPB)/tris-(8-hydroxyquinoline)-aluminum (AlQ)/Mg-Ag/Al的异质结结构有机电致发光器件(OLED),研究了ITO电极性质对OLED器件启亮电压、驱动电压、发光亮度和发光效率等光电性能的影响.实验结果表明,电极性质显著影响OLED器件性能,优化的电极性质通过改善电极与有机层之间的界面特性,从而改善器件的光学和电学性能.  相似文献   

9.
通过对器件的温度特性的研究,能够使器件在合适的温度下保持稳定的工作状态.本文以Miller-Abrahams跳跃传导理论为基础,建立了有机-有机界面限制电流传导的电荷传输的解析模型.依据此模型分析了结构为“注入电极/有机层Ⅰ/有机层Ⅱ/收集电极”的双层薄膜器件在有机界面限制电流传导状态下的电流、电场和载流子分布与工作温度的变化关系.结果表明,在给定的工作电压下,温度升高时降落在层Ⅰ的电压升高,电场增强,而降落在层Ⅱ的电压降低,电场减弱,同时器件的电流增大.  相似文献   

10.
研究了有机薄膜晶体管器件.器件是以热生长的SiO2作为有机薄膜晶体管的栅绝缘层,酞菁铜作为有源层的.实验表明采用一种硅烷耦合剂-十八烷基三氯硅烷(OTS)修饰SiO2可以有效地降低栅绝缘层的表面能从而明显提高了器件的性能.器件的场效应迁移率提高了2.5倍、阈值电压降低了3 V、开关电流比从103增加到104.同时我们采用MoO3修饰铝作为器件的源漏电极,形成MoO3/Al双层电极结构.实验表明在同样的栅极电压下,具有MoO3/Al 电极的器件和金电极的器件有着相似的源漏输出电流Ids.结果显示具有OTS/SiO2双绝缘层的及MoO3/Al 电极结构的器件能有效改进有机薄膜晶体管的性能.  相似文献   

11.
Electrical characteristics of a single-layer organic device using 2-(hexahydropyrimidin-2-ylidene)-malononitrile (HPYM) that is interposed between Al/Al2O3 (cathode) and Ag (anode) electrodes were investigated. The application of different positive voltages produced different high-conductance currents, resulting in the multilevel memory capability of the device. The high-conductance states could be erased back to the low-conductance state by the application of a negative bias. The formation of an aluminum oxide layer between Al and HPYM layer could be one effective method to increase the data-retention time but could be irrelevant with the electric-field-induced conductance-state transition of the device.  相似文献   

12.
Organic Memory Device Fabricated Through Solution Processing   总被引:1,自引:0,他引:1  
Novel organic memory devices including nonvolatile and write-once-read-many-times memory devices are reported. These devices were fabricated through a simple solution processing technique. Programmable electrical bistability was observed on a device made from a polymer film containing metal nanoparticles capped with saturated alkanethiol and small conjugated organic compounds sandwiched between two metal electrodes. The pristine device, which was in a low-conductivity state, exhibited an abrupt increase of current when the device was scanned up to a few volts. The high-conductivity state can be returned to the low-conductivity state by applying a certain voltage in the reverse direction. The device has a good stability in both states, and the transition from the low- to the high-conductivity state takes place in nanoseconds, so that the device can be used as a low-cost, high-density, high-speed, and nonvolatile memory. The electronic transition is attributed to the electric-field-induced charge transfer between the metal nanoparticles and small conjugated organic molecule. The electrical behavior of the device is strongly dependent on the materials in the polymer film. When gold nanoparticles capped with aromatic thiol were used, the device exhibited a transition from low- to high-conductivity state at the first voltage scan, and the device in the high-conductivity state cannot be returned to the low-conductivity state. This device can be used as a write-once-read-many-times memory device.  相似文献   

13.
《Organic Electronics》2014,15(1):144-149
Bistable nonvolatile memory devices containing two different layers of polymers, viz. MEH-PPV (poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenyl vinylene]) and PEDOT:PSS (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)) has been fabricated by a simple spin-coating technique on flexible polyimide (PI) substrates with a structure Al/MEH-PPV/PEDOT:PSS/Ag-Pd/PI. The current–voltage measurements of the as-fabricated devices showed a nonvolatile electrical bistability with electric field induced charge transfer through the polymer layers and negative differential resistance (NDR) which is attributed to the charge trapping in the MEH-PPV layer. The current ON/OFF ratio between the high-conducting state (ON state) and low-conducting state (OFF state) is found to be of the order of 103 at room temperature which is comparable to organic field effect transistor based memory devices. We propose that such an improvement of rectification ratio (ON/OFF ratio) is caused due to the inclusion of PEDOT:PSS, which serves as a conducting current path for carrier transport; however, NDR is an effect of the trapped charges in the MEH-PPV electron confinement layer. The device shows excellent stability over 104 s without any significant degradation under continuous readout testing in both the ON and OFF states. The carrier transport mechanism of the fabricated organic bistable device has been explained on the basis of different conduction mechanisms such as thermionic emission, space-charge-limited conduction, and Fowler–Nordheim tunneling. A band diagram is proposed to explain the charge transport phenomena. These bilayer structures are free from the drawbacks of the single organic layer based memory devices where the phase separation between the nanoparticles and polymers leads to the degradation of device stability and lifetime.  相似文献   

14.
提出了一种浮栅结构的新型有机薄膜晶体管(FG-OTFT)器件,并阐述了这种器件的工作机理.该器件通过控制浮 置栅上的电荷来控制 FG-OTFT 器件的阈值电压的大小,而器件不同的阈值电压便可用来存储“0”和“1”两个状态,故这种器 件可以被用作有机非挥发存储器.我们通过计算机数值模拟的方法对这种器件进行了研究.研究表明...  相似文献   

15.
《Organic Electronics》2008,9(5):916-920
Organic bistable devices with an Al/Alq3/n-type Si structure are investigated at different deposition rates of Alq3 thin film. We can obtain current–voltage characteristics of these devices similar to those of metal/organic semiconductor/metal structures that are widely used for organic bistable devices. The bistable effect of the Al/Alq3/n-type Si structure is primarily caused by the interface defects at the Al/Alq3 junction. Moreover, the electrical properties of these devices can be modified and controlled by utilizing the appropriate deposition rates of the Alq3 thin film by thermal deposition. XPS, AFM, and GIXRD measurements are performed to characterize the properties of Alq3 thin film and Alq3/Al interface. This type of devices involves an extremely simple fabrication process and offers great potential in future advanced organic electronics.  相似文献   

16.
The nonvolatile organic memory devices based on the tris(8-hydroxyquinolinato)aluminum (Alq3) emitting layer embedded with zinc oxide nanoparticles (ZnO-NPs) are reported. The devices have a typical tri-layer structure consisting of the Alq3/ZnO-NPs/Alq3 layers interposed between indium tin oxide (ITO) and aluminum (Al) electrodes. An external bias is used to program the ON and OFF states of the device that are separated by a four-orders-of-magnitude difference in conductivity. No significant degradation of the device is observed in either the ON or OFF state after continuous stress (∼105 s) and multicycle (∼103 cycles) testings. These nanoparticles behave as the charge trapping units, which enable the nonvolatile electrical bistability when biased to a sufficiently high voltage. Impedance spectroscopy, capacitance–voltage (CV) and current–voltage (IV) analysis are used to verify the possible physical mechanism of the switching operation. Moreover, it is found that the location of the ZnO-NPs could affect the memory and opto-electrical characteristics of the devices, such as the ON/OFF ratio, threshold voltage and turn-on voltage, which can be attributed to the influence of the ZnO-NPs and diffused Al atoms in the bulk of the Alq3 layer.  相似文献   

17.
《Organic Electronics》2008,9(5):873-877
In organic memory devices, we introduce non-interacting “write” and “read” processes so that the state of a device is not perturbed during the “read” process. We have used heterojunction devices based on suitable materials in such a way that they can generate photovoltage and photocurrent upon illumination. Both open-circuit voltage or short-circuit current of the device have responded to conductance switching. We have showed that the device can be switched to a high-conducting state by applying a suitable voltage pulse and its state can be probed or “read” by measuring open-circuit voltage or short-circuit current. The results show newer parameters to probe organic memory devices.  相似文献   

18.
《Organic Electronics》2003,4(1):39-44
An organic dye, namely nickel phthalocyanine, has been used in data-storage devices. A “high state” has been written by applying a voltage pulse. The state of the device has been “read” by applying a small probe voltage. The dye embedded in an inert polymer matrix retained the high state for more than an hour, which can be refreshed or erased at will. Hysteresis-type behaviour has been observed in the current–voltage characteristics. The space charges at the metal/semiconductor interfaces, stored under the voltage pulse, have been found to control the charge injection and hence the current in these devices. The formation of space charges near the interfaces, and relaxation have been studied in the data-storage devices. The space charges’ slow relaxation process has been shown to result in the memory device applications of the semiconducting dyes.  相似文献   

19.
制作了一种以Al为金属反射膜和金属半透膜的微腔有机电致发光器件(OLED)。器件结构是:Al/MoO3/NPB/ADN∶TBPe∶DCJTB/Alq3/LiF/Al。设计了五种厚度的金属Al阳极半透膜器件,Al半透膜的厚度依次为:12nm,13nm,14nm,15nm,16nm。通过调节阳极Al半透膜的厚度,改变微腔的光学长度,研究微腔效应对器件性能的影响。利用Al半透膜阳极厚度的变化,调整微腔器件的光学长度,发光效率和色纯度也随之变化。当Al半透膜为12nm时,器件在11V获得最高亮度3 381cd/m2,最高效率为2.01cd/A,色坐标为(0.33,0.39)。实验表明,合理利用微腔效应,可提高以Al为阳极器件的色纯度,并保持一定的发光效率。  相似文献   

20.
The performance of top-emission organic light emitting devices (TEOLEDs) can be improved by using a thin capping layer on top of the semitransparent metal electrode. We investigated the emission properties of inverted mixed single layer TEOLEDs with the same device structure but different capping materials. The thickness of capping layer was optimized by calculation. The power efficiency of device was 2.5 times enhanced when 45 nm TPD capping layer was added. The enhancement is not simply dependent on the transmittance and reflectance of the top contact, but also on other complex phenomena such as the interference effects in the device. The results of properties and dependence of EL spectra on viewing angle for all devices indicated that the large enhancement factor may be related to the complex interference phenomenon in our mixed single layer devices due to the emitter center and recombination region is different from conventional heterojunction devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号