首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a 150-mum-thick CsLiB(6)O(10) crystal, we produced 100-fs, >200-nJ light pulses tunable between 175 and 180 nm by sum-frequency generation at a 1-kHz repetition rate with an all-solid-state laser system mixing the fourth harmonic of a femtosecond Ti:sapphire regenerative amplifier and the idler pulse from a traveling-wave optical parametric amplifier.  相似文献   

2.
Femtosecond optical parametric amplification that results in microjoule mid-infrared pulses at wavelengths exceeding 3 mum is demonstrated. Narrow-band quasi-cw seeding at the signal wavelength is applied to ensure the generation of nearly transform-limited femtosecond pulses at the idler wavelength. The broad bandwidth of the parametric amplification provided by pumping with femtosecond pulses from a Ti:sapphire regenerative amplifier at high intensity results in idler pulse durations shorter than the pump pulse length. The potentials of three nonlinear optical crystals that belong to the potassium titanyl phosphate family are comparatively studied. At 1-kHz repetition rate our all-solid-state system produces highly synchronized ~100-fs pulses in the spectral range between 3 and 4 mum.  相似文献   

3.
Zhang JY  Xu Z  Kong Y  Yu C  Wu Y 《Applied optics》1998,37(15):3299-3305
We report a 10-Hz, highly efficient, widely tunable (from the visible to the IR), broadband femtosecond optical parametric generator and optical parametric amplifier (OPA) in BBO, LBO, and CBO crystals pumped by the frequency-doubled output of a regeneratively amplified Ti:sapphire laser at 400 nm. The output of the system is continuously tunable from 440 nm to 2.5 mum with a maximum overall efficiency of ~25% at 670 nm and an optical conversion efficiency of more than 36% in the OPA stage. The effects of the seed beam energy, the type of the crystal and the crystal length, and the pumping energy of the output of the OPA, such as the optical efficiency, the bandwidth, the pulse duration, and the group velocity mismatch between the signal and the idler and between the seeder and the pump, are investigated. The results provide useful information for optimization of the design of the system.  相似文献   

4.
Femtosecond regenerative amplification in Cr:forsterite   总被引:1,自引:0,他引:1  
We describe an oscillator-amplifier laser system for the generation of high-power femtosecond pulses near 1.25 mum based on chromium-doped forsterite. Chirped-pulse amplification at a 1-kHz repetition rate raises the pulse energy to >350 muJ. The nearly transform-limited 200-muJ, 135-fs-long recompressed pulses have a peak power of approximately 1.5 GW.  相似文献   

5.
Chen YC  Fang XJ  Li J  Liang XY  Zhang HL  Feng BH  Zhang XL  Wu LA  Xu ZY 《Applied optics》2001,40(15):2579-2582
A novel method based on a birefringent crystal is presented to compensate for the group-velocity mismatch between a femtosecond pulsed pump and the signal or idler in an optical parametric generator (OPG). With a thin calcite plate inserted between two beta-barium borate crystals for synchronization, an efficient four-pass OPG pumped by a frequency-doubled ~200-fs Ti:sapphire laser is obtained. The conversion efficiency is almost doubled throughout the whole tunable region compared with a conventional OPG pumped at the same power density, indicating that the total conversion efficiency of femtosecond optical parametric amplifier system can be raised significantly by use of this new four-pass OPG to generate the seed.  相似文献   

6.
Abstract

We describe two configurations of collinearly pumped femtosecond optical parametric oscillator based on periodically poled lithium niobate and tunable in the infrared from 975 nm to 4.98 μm. Maximum output powers of 240 mW for the signal and 106 mW for the idler were recorded with 25 mW of average power measured at 4.88 μm. An overall conversion efficiency of 35% and slope efficiencies for the signal of 46% at a wavelength of 1.04 μm and 70% at 1.1 μm were measured. Interferometric autocorrelations of the signal and idler pulses at various wavelengths within the tuning range have been obtained and imply nearly transform-limited pulse durations of about 140fs for the signal and about 190fs for the idler.  相似文献   

7.
Amplified spontaneous emission power and contrast ratio in a linear miltipass Ti:sapphire regenerative amplifier with a wavelength centered at 1054 nm are calculated and measured. It is shown that the passive losses of a seed pulse and the losses in coupling to the regenerative amplifier cavity mode degrade the intensity contrast ratio to 10(-6)-10(-7). The advantage of an optical parametric chirped pulse amplifier with respect to the contrast ratio is discussed.  相似文献   

8.
Wang H  Wong KS  Deng D  Xu Z  Wong GK  Zhang J 《Applied optics》1997,36(9):1889-1893
We demonstrate optical parametric generation and amplification of femtosecond pulses in the entire visible range using type-I phase-matched beta-barium borate and lithium triborate crystals pumped by the frequency-doubled output of a Ti:sapphire regenerative amplifier at 395 nm. The output is tunable from 470 to 770 nm with a pulse width of ~170 fs at a repetition rate of 1 kHz and a maximum output energy of ~1.1 muJ/pulse. The visible optical parametric amplifier output was then frequency doubled and sum frequency mixed with the fundamental output of Ti:sapphire at 790 nm to produce UV pulses with a conversion efficiency of greater than 25%. The second harmonic generated UV pulses are tunable from 240 to 380 nm with a maximum pulse energy of ~260 nJ/pulse.  相似文献   

9.
In this paper we present, for the first time to our knowledge, a new pulse shaping technology (modulation schemes for seed laser) used to mitigate pulse narrowing effect and SBS effect in a high energy Er:Yb codoped fiber master oscillator power amplifier system at 1.5 μm to obtain longer pulse duration and higher energy. An average power of over 1.3 W and a pulse energy of over 0.13 mJ were obtained at 10 kHz repetition rate with a pulse duration of 200 ns and near-diffraction-limited beam quality (M(2)<1.2).  相似文献   

10.
Zhang Z  Yagi T 《Applied optics》1996,35(12):2026-2029
A regenerative amplifier for femtosecond pulses that operates at a wavelength off the peak gain of Ti:sapphire is reported. Apair of prisms and an adjustable slit are used in the intracavity space so that the operating wavelength can be tuned to 745 nm. The amplified and compressed pulse is 92 fs (Gaussian profile assumed) at an energy of 1 mJ. The pumping efficiency is 12.5%.  相似文献   

11.
We present numerical results for optimization of the overall idler conversion efficiency of a nanosecond optical parametric oscillator (OPO), wherein the signal generated in the OPO process is also used as the pump for a difference frequency generation (DFG) process in a quasi-periodic MgO:LiNbO(3) crystal. The phase-matching conditions are considered such that the generated idler frequencies in both the processes (i.e., OPO and DFG) coincide. Optimization for the idler generation has been performed with respect to the different parameters, such as input pump power, pump pulse duration, and the output coupler reflectivity, for quasi-phase-matched interaction in MgO:LiNbO(3). Wavelength of the pump, signal, and idler waves considered in the optimization are 1.064 μm, 1.456 μm, and 3.95 μm, respectively. A maximum overall idler generation efficiency of ≈33% could be obtained in the simultaneous OPO+DFG process for a pump pulse duration of 72 ns and output coupler reflectivity (R(s)) of 90%, whereas for the stand-alone OPO process, the maximum idler generation efficiency was found to be ≈15%. The optimization has been illustrated for an average pump power of 8 W at a pulse repetition frequency (PRF) of 10 kHz. This approach of simultaneous OPO+DFG process can be employed to significantly enhance the idler generation efficiency of nanosecond OPOs.  相似文献   

12.
We propose a scheme for optimizing the time delay between the pump and seed pulses of an optical parametric amplifier (OPA) over a large spectral range. The efficiency of this method is demonstrated for a femtosecond BBO parametric amplifier seeded with a white-light continuum pulse. The error signal used for intensity stabilization results from a modulation of the temporal delay between the pump and the continuum pulses and phase-sensitive detection of the amplified signal. It allows us to lock the delay to the position that maximizes the OPA gain.  相似文献   

13.
Zhang WQ 《Applied optics》2005,44(12):2431-2437
For group-velocity (GV) matching, tunable femtosecond parametric oscillation must use noncollinear phase matching (PM). The tuning curves of femtosecond parametric oscillation are described; tuning can be continuous from the visible to the mid infrared. We demonstrate that GV matching and PM can be satisfied in type II PM for KTP. The effective nonlinear coefficient, the walk-off angles, the acceptance angles (a and theta(s)), the acceptance spectral width, and the duration of the output idler pulse are calculated. Consequently, optimum femtosecond parametric oscillation of noncollinear phase matching is obtained in KTP.  相似文献   

14.
Zhu R  Wang J  Zhou J  Liu J  Chen W 《Applied optics》2012,51(17):3826-3831
A unique approach with a hybrid master oscillator power amplifier configuration to obtain single-frequency, high-energy laser pulses at 1064 nm is presented. The setup consists of a single-frequency seed laser, a multistage fiber amplifier, and a four-pass crystal rod amplifier. Pulse energy of 10 mJ is obtained at the repetition rate of 100 Hz. The pulse width is about 110 ns with a transform-limited linewidth of 3.2 MHz. The M(2) factor of the output beam is about 1.5. To our knowledge, this is the first report of using a hybrid amplifier to obtain 10 mJ pulses with long pulse width and transform-limited linewidth.  相似文献   

15.
We have improved a highly coherent x-ray laser at 13.9 nm using an oscillator-amplifier configuration. To improve a high-brilliance x-ray laser, we adopted traveling wave pumping for the amplifier target and rotated the amplifier target 3-4 mrad in the counterclockwise direction. Thereby, a seed x-ray laser can be amplified by medium plasma of the amplifier target with a high gain coefficient. The amplified x-ray laser has the output energy of approximately 1.3 microJ, corresponding to a large photon flux of 6.5 x 10(10) photons/pulse and a high peak brilliance of 5 x 10(26) photons/(s x mm(2) x mrad(2) x 0.01% bandwidth).  相似文献   

16.
Kong Y  Chen X  Xia Y 《Applied optics》2007,46(23):5698-5702
We theoretically propose a procedure based on a cascading genetic algorithm for the design of aperiodically quasi-phase-matched gratings for frequency conversion of optical ultrafast pulses during difference-frequency generation. By designing the sequence of a domain inversion grating, different wavelengths at the output idler pulse almost have the same phase response, so femtosecond laser pulses at wavelength 800 nm can be shifted to other wavelengths without group-velocity mismatch.  相似文献   

17.
A subnanosecond time-resolved ultraviolet (UV) resonance Raman system has been developed to study protein structural dynamics. The system is based on a 1 kHz Nd:YLF-pumped Ti:Sapphire regenerative amplifier with harmonic generation that can deliver visible (412, 440, 458, and 488 nm) and UV (206, 220, 229, and 244 nm) pulses. A subnanosecond (0.2 ns) tunable near-infrared pulse from a custom-made Ti:Sapphire oscillator is used to seed the regenerative amplifier. A narrow linewidth of the subnanosecond pulse offers the advantage of high resolution of UV resonance Raman spectra, which is critical to obtain site-specific information on protein structures. By combination with a 1 m single spectrograph equipped with a 3600 grooves/mm holographic grating and a custom-made prism prefilter, the present system achieves excellent spectral (<10 cm(-1)) and frequency (approximately 1 cm(-1)) resolutions with a relatively high temporal resolution (<0.5 ns). We also report the application of this system to two heme proteins, hemoglobin A and CooA, with the 440 nm pump and 220 nm probe wavelengths. For hemoglobin A, a structural change during the transition to the earliest intermediate upon CO photodissociation is successfully observed, specifically, nanosecond cleavage of the A-E interhelical hydrogen bonds within each subunit at Trpalpha14 and Trpbeta15 residues. For CooA, on the other hand, rapid structural distortion (<0.5 ns) by CO photodissociation and nanosecond structural relaxation following CO geminate recombination are observed through the Raman bands of Phe and Trp residues located near the heme. These results demonstrate the high potential of this instrument to detect local protein motions subsequent to photoreactions in their active sites.  相似文献   

18.
A singly resonant, single-axial-mode, optical parametric oscillator (OPO) based on periodically poled KTiOPO(4) (PPKTP) is reported. Signal (1.68 mum) and idler (2.90 mum) optical bandwidths have been narrowed to <400 MHz by use of a diffraction grating at grazing incidence. The OPO generates 370 muJ of signal radiation when pumped by 3.1 mJ of 1.064-mum radiation. We implemented a single-pass PPKTP amplifier to yield 2.15-mJ signal and 1.17-mJ idler radiation without broadening the spectral bandwidths.  相似文献   

19.
A chirped pulse amplification laser with zigzag slab Nd:glass amplifiers dedicated to x-ray laser research is described. The laser provides a 1.6 ps duration pulse with approximately 7 J energy at a repetition rate of 0.1 Hz. In the power amplifier system, laser light is amplified in a two-step manner: The first step is image-relayed multipass amplification up to approximately 1 J with a 10 mm x 10 mm beam. The second step is double-pass amplification up to >10 J with a 10 mm x 90 mm beam. By using this laser system, the saturated amplification of the Ni-like Ag laser at a wavelength of 13.9 nm has been successfully demonstrated.  相似文献   

20.
Braun A  Liu X  Mourou G  Kopf D  Keller U 《Applied optics》1997,36(18):4163-4167
A diode-pumped Nd:fluorophosphate regenerative amplifier was developed. Chirped seed pulses were amplified to 24 muJ at repetition rates to 1 kHz and to 5 muJ at a 10-kHz repetition rate. On compression, 850-fs pulses were obtained. White-light continuum generation was observed when these pulses were focused into a glass sample. Furthermore, based on a rate equation analysis, the effects of the gain material lifetime on the pulse energy at high repetition rates are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号