首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human atopic asthma is a complex heritable inflammatory disorder of the airways associated with clinical signs of allergic inflammation and airway hyperresponsiveness. Recent studies demonstrate that the degree of airway responsiveness is strongly associated with interleukin (IL)-9 expression in murine lung. To investigate the contribution of IL-9 to airway hyperresponsiveness, and to explore directly its relationship to airway inflammation, we studied transgenic mice overexpressing IL-9. In this report we show that IL-9 transgenic mice (FVB/N-TG5), in comparison with FVB/NJ mice, display significantly enhanced eosinophilic airway inflammation, elevated serum total immunoglobulin E, and airway hyperresponsiveness following lung challenge with a natural antigen (Aspergillus fumigatus). These data support a central role for IL-9 in the complex pathogenesis of allergic inflammation.  相似文献   

2.
The earliest contact between antigen and the innate immune system is thought to direct the subsequent antigen-specific T cell response. We hypothesized that cells of the innate immune system, such as natural killer (NK) cells, NK1.1(+) T cells (NKT cells), and gamma/delta T cells, may regulate the development of allergic airway disease. We demonstrate here that depletion of NK1.1(+) cells (NK cells and NKT cells) before immunization inhibits pulmonary eosinophil and CD3(+) T cell infiltration as well as increased levels of interleukin (IL)-4, IL-5, and IL-12 in bronchoalveolar lavage fluid in a murine model of allergic asthma. Moreover, systemic allergen-specific immunoglobulin (Ig)E and IgG2a levels and the number of IL-4 and interferon gamma-producing splenic cells were diminished in mice depleted of NK1.1(+) cells before the priming regime. Depletion of NK1.1(+) cells during the challenge period only did not influence pulmonary eosinophilic inflammation. CD1d1 mutant mice, deficient in NKT cells but with normal NK cells, developed lung tissue eosinophilia and allergen-specific IgE levels not different from those observed in wild-type mice. Mice deficient in gamma/delta T cells showed a mild attenuation of lung tissue eosinophilia in this model. Taken together, these findings suggest a critical role of NK cells, but not of NKT cells, for the development of allergen-induced airway inflammation, and that this effect of NK cells is exerted during the immunization. If translatable to humans, these data suggest that NK cells may be critically important for deciding whether allergic eosinophilic airway disease will develop. These observations are also compatible with a pathogenic role for the increased NK cell activity observed in human asthma.  相似文献   

3.
The action of reducing, oxidizing and thiol-alkylating agents on early steps of Junin virus (JV) multiplication in Vero cells was investigated. The presence of reducing agents during virus adsorption as well as incubation of viral particles with these compounds before infection enhanced JV infectivity. On the contrary, the thiol-alkylating agent 5,5' dithiobis (2-nitrobenzoic acid) and the oxidizing compound potassium periodate showed an inhibitory effect, suggesting that sulfhydryl groups, and certain sugar moieties of viral glycoproteins play an important role in the first steps of JV infection. Also enzymatic treatment of cell monolayers and addition of concanavalin A to cultures prior to infection suggest that cellular glycoproteins are involved in virus attachment.  相似文献   

4.
In order to study the role of IL-4 and IL-5 in allergen-induced airway hyperresponsiveness in mice, the effect of the combined administration of anti-IL-4 and anti-IL-5 monoclonal antibodies (mAbs) on IgE response, airway inflammation and airway hyperresponsiveness was studied in sensitized Balb/c mice. Three inhalations of antigen caused an increase in the number of eosinophils in bronchoalveolar lavage fluid and in airway responsiveness to acetylcholine, with a significant elevation in the serum antigen-specific IgE level. Anti-IL-4 mAb inhibited IgE production but did not affect airway eosinophilia or hyperresponsiveness. Moreover, anti-IL-5 mAb inhibited airway eosinophilia but did not affect IgE production or airway hyperresponsiveness. The combined administration of anti-IL4 and anti-IL-5 mAbs, however, inhibited IgE antibody production, airway eosinophilia and hyperresponsiveness. These results suggest that inhibitory action of IL-4 and IL-5 in combination can effectively suppress the onset of antigen-induced airway hyperresponsiveness in mice.  相似文献   

5.
The causative relationship between airway inflammation and hyperreactivity is unclear, since inflammatory changes have been examined at one or, at most, a few time-points after antigen challenge in both human asthma and animal models. We have made a detailed investigation of inflammatory and functional changes in the airways up to 8 days after antigen challenge in guinea-pigs. In particular, we examined the hypothesis that eosinophil-derived mediators contribute to tissue damage and the development of airway hyperresponsiveness. Following antigen challenge, the influx of inflammatory cells and mediator release in airway tissue and bronchoalveolar lavage fluid were correlated temporally with histopathological changes in airway tissue and airway responsiveness. Eosinophil influx was demonstrable at 4 h. Eosinophilia peaked after 24 h and persisted for at least 8 days. Parallel increases in the concentrations of major basic protein and eosinophil cationic protein in bronchoalveolar lavage fluid indicated that the eosinophils were activated. Eosinophilia was accompanied by subepithelial oedema and epithelial damage co-localized with major basic protein immunoreactivity. A transient neutrophilia (< 48 h duration) and an increase in neutrophil elastase in bronchoalveolar lavage fluid peaked at 14 h. The proportion of airway macrophages with an activated morphology increased at 8 h and remained markedly elevated until 72 h. Airways were hyperresponsive to histamine at 4 h and for at least 8 days. The antigen-induced airway inflammation resemble in time-course and histopathology that seen in antigen-challenged asthmatics, and indicate that the eosinophil and its cytotoxic proteins may be major mediators of airway mucosal damage and airway hyperresponsiveness.  相似文献   

6.
Interleukin (IL)-9, a pleiotropic cytokine produced by the Th2 subset of T lymphocytes has been proposed as product of a candidate gene responsible for asthma. Its wide range of biological functions on many cell types involved in the allergic immune response suggests a potentially important role in the complex pathogenesis of asthma. To investigate the contributions of IL-9 to airway inflammation and airway hyperresponsiveness in vivo, we created transgenic mice in which expression of the murine IL-9 cDNA was regulated by the rat Clara cell 10 protein promoter. Lung selective expression of IL-9 caused massive airway inflammation with eosinophils and lymphocytes as predominant infiltrating cell types. A striking finding was the presence of increased numbers of mast cells within the airway epithelium of IL-9-expressing mice. Other impressive pathologic changes in the airways were epithelial cell hypertrophy associated with accumulation of mucus-like material within nonciliated cells and increased subepithelial deposition of collagen. Physiologic evaluation of IL-9-expressing mice demonstrated normal baseline airway resistance and markedly increased airway hyperresponsiveness to inhaled methacholine. These findings strongly support an important role for IL-9 in the pathogenesis of asthma.  相似文献   

7.
We have reported previously that HIV-TAT-dominant negative (dn) Ras inhibits eosinophil adhesion to ICAM-1 after activation by IL-5 and eotaxin. In this study, we evaluated the role of Ras in Ag-induced airway inflammation and hyperresponsiveness by i.p. administration into mice of dnRas, which was fused to an HIV-TAT protein transduction domain (TAT-dnRas). Uptake of TAT-dnRas (t(1/2) = 12 h) was demonstrated in leukocytes after i.p. administration. OVA-sensitization significantly increased eosinophil and lymphocyte numbers in bronchoalveolar lavage fluid 24 h after final challenge. Treatment of animals with 3-10 mg/kg TAT-dnRas blocked the migration of eosinophils from 464 +/- 91 x 10(3)/ml to 288 +/- 79 x 10(3)/ml with 3 mg/kg of TAT-dnRas (p < 0.05), and further decreased to 116 +/- 63 x 10(3)/ml after 10 mg/kg TAT-dnRas (p < 0.01). Histological examination demonstrated that inflammatory cell infiltration (largely eosinophils and mononuclear cells) and mucin production around the airways caused by OVA were blocked by TAT-dnRas. OVA challenge also caused airway hyperresponsiveness to methacholine, which was dose dependently blocked by treatment with TAT-dnRas. TAT-dnRas also blocked Ag-induced IL-4 and IL-5, but not IFN-gamma, production in lung tissue. Intranasal administration of IL-5 caused eosinophil migration into the airway lumen, which was attenuated by pretreatment with TAT-dnRas. By contrast, TAT-green fluorescent protein or dnRas lacking the TAT protein transduction domain did not block airway inflammation, cytokine production, or airway hyperresponsiveness. We conclude that Ras mediates Th2 cytokine production, airway inflammation, and airway hyperresponsiveness in immune-sensitized mice.  相似文献   

8.
The relationships between personality disorder clusters and defense mechanism factors were evaluated in 31 female and 24 male psychiatric inpatients from an urban hospital, who ranged in age from 19 to 57 years. The degree to which defense factors predicted personality disorder psychopathology was assessed, with gender entered as a covariate. The degree of borderline psychopathology had the strongest relationship with the Immature defense style (F(1,54) = 9.83, R2 = .54, p < .05). The results support previous research demonstrating a stronger link between Borderline personality disorder and defense styles relative to other personality disorders.  相似文献   

9.
We previously demonstrated that chronic intratracheal instillation of diesel exhaust particles (DEP) induces airway inflammation and hyperresponsiveness in the mouse, and that these effects were partially reversed by the administration of superoxide dismutase (SOD). In the present study, we have investigated the involvement of superoxide in DEP-induced airway response by analyzing the localization and activity of two enzymes: (1) a superoxide producer, NADPH cytochrome P-450 reductase (P-450 reductase), and (2) a superoxide scavenger, SOD, in the lungs of the exposed mice and controls. P-450 reductase was detected mainly in ciliated cells and clara cells: its activity was increased by the repeated intratracheal instillation of DEP. While CuZn-SOD and Mn-SOD were also present in the airway epithelium, their activity was significantly decreased following DEP instillation. Exposure to DEP doubled the level of nitric oxide (NO) in the exhaled air. DEP exposure also increased the level of constitutive NO synthase (cNOS) in the airway epithelium and inducible NO synthase (iNOS) in the macrophages. Pretreatment with N-G-monomethyl L-arginine, a nonspecific inhibitor of NO synthase, significantly reduced the airway hyperresponsiveness induced by DEP. These results indicate that superoxide and NO may each contribute to the airway inflammation and hyperresponsiveness induced by the repeated intratracheal instillation of DEP in mice.  相似文献   

10.
Eosinophils play a central role in the inflammatory response associated with bronchial asthma. We studied the involvement of eosinophils in the development of airway hyperresponsiveness (AHR) in a mouse model of allergic airway sensitization. Sensitization of BALB/c mice to OVA via the airways induced allergen-specific T-cell responses, IgE production, immediate cutaneous hypersensitivity (ICH), and increased airway reactivity. Airway sensitization was associated with eosinophil infiltration of the airways and increased production of interleukin-5 (IL-5) in cultures of peribronchial lymph node cells. Treatment of OVA-challenged animals with anti-IL-5 antibody during the sensitization protocol completely abolished the infiltration of eosinophils into the lung tissue and prevented the development of AHR without affecting levels of allergen-specific IgE, cutaneous hypersensitivity and allergen-specific T cell responses. These findings demonstrate that infiltration of lung tissue by eosinophils, triggered by increased IL-5 production, is a major factor in the development of AHR in this mouse model of airway sensitization.  相似文献   

11.
Cytokine-induced neutrophil chemoattractant (CINC) is a rat chemokine with potent chemoattractant effects on neutrophils. We determined the involvement of CINC in ozone-induced airway neutrophilia and bronchial hyperresponsiveness (BHR) in the rat. We found a marked increase in lung CINC messenger RNA (mRNA) within 2 h after cessation of ozone exposure (1 ppm for 3 h), as measured by Northern blot analysis, whereas rats exposed to room air had no detectable CINC mRNA. Ozone exposure induced a significant neutrophilia in bronchoalveolar lavage fluid (BALF) at 24 h after exposure (air-exposed rats: 4.2 +/- 2.0 x 10(4), versus ozone-exposed rats: 16.1 +/- 3.7 x 10(4)); prior treatment with a goat anti-CINC antibody (1 mg, intravenously) suppressed the neutrophilia (3.1 +/- 0.9 x 10(4)). When administered intratracheally, the antibody (230 micrograms) partially inhibited the influx of neutrophils. The increase in bronchial responsiveness to acetylcholine observed after ozone exposure was not inhibited by the anti-CINC antibody. The anti-CINC antibody (1 mg, intravenously) also inhibited BALF neutrophilia induced by exposure to a higher concentration of ozone (3 ppm, 3 h), without an effect on BHR. CINC is an important chemokine causing ozone-induced neutrophil chemoattraction, but is not involved in the induction of ozone-induced BHR. The neutrophil is unlikely to contribute to BHR in this model.  相似文献   

12.
The role of nitric oxide in the airway hyperresponsiveness and inflammation of bronchial asthma has not yet been established. However, L-arginine, the substrate for nitric oxide synthases, reportedly alleviates airway hyperresponsiveness caused by parainfluenza virus and reduces granulocytic inflammation induced by ischemia-reperfusion. We investigated the effects of L-arginine on a murine model of allergic asthma that included airway hyperresponsiveness, eosinophilic inflammation and expression of interleukin (IL)-5 in the lung. The mice received drinking water with or without L-arginine for 9 weeks. Histologic evaluation and cellular profiles in bronchoalveolar lavage fluid showed that p.o. administration of L-arginine (72 micromol/kg/day) significantly enhanced eosinophilic airway inflammation and goblet cell proliferation that were associated with intratracheal instillation of ovalbumin. L-Arginine also increased protein levels of IL-5 and IL-2 in supernatants from the lung exposed to ovalbumin. The number of eosinophils in bronchoalveolar lavage fluid correlated significantly with the expression of IL-5. L-Arginine did not reverse ovalbumin-associated airway hyperresponsiveness to inhaled ACh. These results suggest that p.o. administration of L-arginine aggravates allergen-induced eosinophilic airway inflammation via expression of IL-5, and in this model it does not show therapeutic efficacy against airway hyperresponsiveness associated with allergen exposure. Oral administration of L-arginine, the precursor of nitric oxide, may not be an effective intervention in allergic asthma.  相似文献   

13.
The mechanisms that regulate the selective infiltration of eosinophils in certain allergic diseases are still poorly understood. The CC chemokine eotaxin is a potent chemoattractant, highly specific for eosinophils. Recent studies have implicated that eotaxin plays an important role in the recruitment of eosinophils in different inflammation processes. A number of other chemokines, cytokines, and chemoattractants also have chemotactic activities for eosinophils and some of them present high selectivity for eosinophils. To further study the role of eotaxin in inflammation, we generated mutant mice with the eotaxin gene disrupted and replaced by the Escherichia coli beta-galactosidase gene. These mice developed normally and had no histologic or hematopoietic abnormalities. Furthermore, our studies showed that the lack of eotaxin did not affect the recruitment of eosinophils in the inflammation models induced by Sephadex beads and thioglycollate, as well as in an experimental lung eosinophilia model induced by ovalbumin aerosol challenge, even at the onset of the inflammatory response. The replacement of the eotaxin gene by the beta-galactosidase gene provided a useful marker to monitor the activity of the eotaxin promoter under normal conditions and after antigen challenges. Immunohistochemical staining suggested that endothelial cells were the major sources of eotaxin expression.  相似文献   

14.
Interleukin-11 is a pleotropic cytokine produced by lung stromal cells in response to respiratory viruses, cytokines, and histamine. To further define its potential effector functions, the Clara cell 10-kD protein promoter was used to express IL-11 and the airways of the resulting transgene mice were characterized. In contrast to transgene (-) littermates, the airways of IL-11 transgene (+) animals manifest nodular peribronchiolar mononuclear cell infiltrates and impressive airways remodeling with subepithelial fibrosis. The inflammatory foci contained large numbers of B220(+) and MHC Class II(+) cells and lesser numbers of CD3(+), CD4(+), and CD8(+) cells. The fibrotic response contained increased amounts of types III and I collagen, increased numbers of alpha smooth muscle actin and desmin-containing cells and a spectrum of stromal elements including fibroblasts, myofibroblasts, and smooth muscle cells. Physiologic evaluation also demonstrated that 2-mo-old transgene (+) mice had increased airways resistance and non-specific airways hyperresponsiveness to methacholine when compared with their transgene (-) littermates. These studies demonstrate that the targeted expression of IL-11 in the mouse airway causes a B and T cell-predominant inflammatory response, airway remodeling with increased types III and I collagen, the local accumulation of fibroblasts, myofibroblasts, and myocytes, and obstructive physiologic dysregulation. IL-11 may play an important role in the inflammatory and fibrotic responses in viral and/or nonviral human airway disorders.  相似文献   

15.
Exposure to ambient ozone (O3) is associated with increased exacerbations of asthma. We sought to determine whether mast cell degranulation is induced by in vivo exposure to O3 in mice and whether mast cells play an essential role in the development of pulmonary pathophysiological alterations induced by O3. For this we exposed mast cell-deficient WBB6F1-kitW/kitW-v (kitW/kitW-v) mice and the congenic normal WBB6F1 (+/+) mice to air or to 1 or 3 parts/million O3 for 4 h and studied them at different intervals from 4 to 72 h later. We found evidence of O3-induced cutaneous, as well as bronchial, mast cell degranulation. Polymorphonuclear cell influx into the pulmonary parenchyma was observed after exposure to 1 part/milllion O3 only in mice that possessed mast cells. Airway hyperresponsiveness to intravenous methacholine measured in vivo under pentobarbital anesthesia was observed in both kitW/kitW-v and +/+ mice after exposure to O3. Thus, although mast cells are activated in vivo by O3 and participate in O3-induced polymorphonuclear cell infiltration into the pulmonary parenchyma, they do not participate detectably in the development of O3-induced airway hyperresponsiveness in mice.  相似文献   

16.
Allergic asthma is thought to be regulated by Th2 cells, and inhibiting this response is a promising mode of intervention. Many studies have focused on differentiation of Th cells to the Th1 or Th2 subset in vitro. IL-4 is essential for Th2 development, while IL-12 induces Th1 development, which can be enhanced by IL-18. In the present study, we investigated whether IL-12 and IL-18 were able to interfere in Th2 development and the associated airway symptoms in a mouse model of allergic asthma. Mice were sensitized with OVA using a protocol that induces IgE production. Repeated challenges by OVA inhalation induced elevated serum levels of IgE, airway hyperresponsiveness, and a predominantly eosinophilic infiltrate in the bronchoalveolar lavage concomitant with the appearance of Ag-specific Th2-like cells in lung tissue and lung-draining lymph nodes. Whereas treatments with neither IL-12 nor IL-18 during the challenge period were effective, combined treatment of IL-12 and IL-18 inhibited Ag-specific Th2-like cell development. This inhibition was associated with an absence of IgE up-regulation, airway hyperresponsiveness, and cellular infiltration in the lavage. These data show that, in vivo, the synergistic action of IL-12 and IL-18 is necessary to prevent Th2-like cell differentiation, and consequently inhibits the development of airway symptoms in a mouse model of allergic asthma.  相似文献   

17.
The present study was designed to assess the effects of repeated subacute ozone (O3) exposure on pulmonary inflammation and ventilation in two inbred strains of mice differentially susceptible to a single O3 exposure. Susceptible C57BL/6J (B6) and resistant C3H/HeJ (C3) mice were exposed to 0.3 ppm O3 for 48 and 72 h and, after 14 days recovery, both strains were reexposed. Airway inflammation and lung injury were assessed by counting inflammatory cells and measuring total protein content and lactate dehydrogenase (LDH) activity in bronchoalveolar lavage (BAL) returns. Minute ventilation [VE, the product of breathing frequency (f), and tidal volume (VT)] was measured prior to and immediately following each exposure. After the initial exposure, B6 mice developed greater O3-induced increases in total protein, inflammatory cell influx, and LDH activity compared to C3 mice. In normal air, VE was also significantly elevated in B6, but not C3, mice after O3. The hypercapnic f of B6 and hypercapnic VT of C3 mice were significantly altered after O3 exposure. Reexposure to O3 caused a smaller increase in the numbers of macrophages, lymphocytes, epithelial cells, and BAL protein in both strains, and no changes in LDH activity. However, the number of polymorphonuclear leukocytes significantly increased in B6 and C3 mice as compared to the initial O3 exposure. In both strains, the ventilatory responses to normal air or hypercapnia were largely reproducible after O3 reexposure. Results indicated that differential susceptibility to O3-induced inflammation was maintained in B6 and C3 mice with O3 reexposure although the magnitude of the difference was reduced. Results also suggest that the ventilatory responses to O3 in B6 and C3 mice were reproducible with reexposure, and that airway inflammation and ventilation were not codependent.  相似文献   

18.
We studied the effects of an anti-interleukin (IL)-5 monoclonal antibody (TRFK-5) or dexamethasone (DEX) to reverse already established airway hyperresponsiveness (AHR) and tissue eosinophilia in a Schistosoma mansoni antigen-sensitized and airway-challenged mouse model of chronic asthma. In this model at 4 d after antigen challenge there is dramatic bronchoalveolar lavage fluid (BAL) eosinophilia, AHR to intravenous methacholine (MCh), and histologic evidence of peribronchial eosinophilic infiltration and mucoid cell hyperplasia. These changes persist for up to 2 wk after antigen challenge. Treatment with DEX from Days 4 through 10 significantly reduced established airway eosinophilia compared with animals sham-treated with saline from Days 4 -10 (120 +/- 29 eosinophils/microl BAL for DEX-treated mice versus 382 +/- 60 eosinophils/microl BAL for sham-treated animals, p < 0.01). DEX-treated mice also had dramatically reduced mucoid cell hyperplasia, and airway responsiveness returned to normal. In contrast, TRFK-5 given during the same time period reduced airway eosinophilia (86 +/- 32 eosinophils/microl BAL versus 382 +/- 60 eosinophils/microl BAL, p < 0.01) but did not reduce goblet cell hyperplasia or reverse already established AHR. Treatment with DEX but not TRFK-5 also inhibited interferon gamma (IFN-gamma) content of BAL fluid (0.49 +/- 0.09 ng/ml BAL fluid for DEX versus 1.50 +/- 0.24 ng/ml BAL fluid and 1.36 +/- 0.13 ng/ml BAL fluid for TRFK-5 and sham-treated mice, respectively, both p < 0.001 versus DEX). Thus, treatment with DEX reduces established eosinophilic airway inflammation and AHR in S. mansoni-sensitized and airway-challenged mice but treatment with TRFK-5 reversed established eosinophilia without ameliorating established AHR. Together, these data suggest that once airway inflammation develops, neutralizing the effects of IL-5 or reducing eosinophilia alone may not result in inhibiting established AHR in atopic asthma.  相似文献   

19.
Eosinophils and cytokines active on eosinophils, especially IL-5, are believed to be critically involved in chronic allergic diseases. IL-5 activates eosinophils and enhances their survival in vitro by delaying apoptosis. In this study, we found that lidocaine and six analogues blunt responses of eosinophils to IL-5. Lidocaine and its derivatives inhibit IL-5-mediated eosinophil survival in a concentration-dependent manner (IC50 = 110 microM for 30 pg/ml IL-5). At suboptimal lidocaine concentrations, the eosinophil survival response to IL-5 shifts and more IL-5 is required to maintain survival. The inhibitory effect requires at least 24-h exposure of eosinophils to lidocaine, and the protein kinase C activator, PMA, completely reverses the inhibition. A multiparameter flow-cytometric analysis shows that lidocaine hastens the apoptosis of eosinophils normally delayed by IL-5. Lidocaine does not affect IL-5R expression or IL-5-induced protein tyrosine phosphorylation. Lidocaine also inhibits eosinophil survival mediated by IL-3 or granulocyte-macrophage CSF, although less potently than that mediated by IL-5. Furthermore, lidocaine inhibits eosinophil superoxide production stimulated by IL-5, granulocyte-macrophage CSF, or IL-3, but not that stimulated by platelet-activating factor, immobilized IgG, or PMA. Lidocaine and its derivatives show novel immunomodulatory properties and are able to blunt eosinophil responses to cytokines in addition to their local anesthetic or antiarrhythmic properties. Thus, lidocaine and its derivatives may represent a new class of therapeutic agents to treat patients with allergic diseases.  相似文献   

20.
Microelectrode recording methods for stereotactic localization of the subthalamic nucleus (STN) and surrounding structures are described. These methods accurately define targets for chronic deep brain stimulation in the treatment of Parkinson's disease. Mean firing rates and a burst index were determined for all recorded neurons, and responses to active and passive limb and orofacial movements were tested. STN neurons had a mean firing rate of 37+/-17 Hz (n = 248) and an irregular firing pattern (median burst index, 3.3). Movement-related activity and tremor cells were identified in the STN. Ventral to the STN, substantia nigra pars reticulata neurons had a mean rate of 71+/-23 Hz (n = 56) and a more regular firing pattern (median burst index, 1.7). Short trains (1-2 seconds) of electrical microstimulation of STN could produce tremor arrest but were not found to be useful for localization. Compared with data from normal monkeys our findings suggest that STN neuronal activity is elevated in Parkinson's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号