首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为实现多喷嘴对置式水煤浆气化炉炉渣资源化、减量化、无害化利用,对兖矿集团陕西未来能源化工有限公司气化炉粗渣和细渣进行分析,研究气化渣的粒度分布、烧失量、化学组成、显微结构、残碳分布、表面形态等特性,并对其综合利用方向提出建议。结果表明,气化细渣、粗渣烧失量均较高,粗渣为18.79%,细渣为30.57%,未燃碳是烧失量的主要成分,细渣未燃碳高于粗渣。未燃碳在粗、细渣中的分布具有一定规律性,细渣的碳含量随粒径增大而增加,粗渣碳主要分布在0.500~0.125 mm中等粒径。SEM结果表明,气化残渣中的物质由多孔不规则颗粒、黏结球形颗粒和孤立的大球形颗粒组成。其中,多孔不规则颗粒的主要成分为碳,球形颗粒主要成分为硅铝矿物。粗渣、细渣孔隙以4~10 nm介孔为主,细渣的孔结构和比表面积优于粗渣。试验炉渣可作为循环流化床掺烧燃料、废水处理吸附材料、建材掺混材料使用。  相似文献   

2.
针对发电厂排放的粉煤灰烧失量较高不能直接利用的现状,山东煤机装备集团公司利用自主研制的专用旋流—静态微泡浮选柱对粉煤灰进行了脱炭的浮选试验研究,并获得了成功应用;粉煤灰降炭提质湿法浮选技术工艺分选设备简单,运行成本低,回收率高达90%以上,创造了可观的经济效益和社会效益。  相似文献   

3.
为深入了解气化细渣的燃烧特性,将气化细渣(BL)筛分,得到BL1,BL2,BL3,借助XRD和SEM-EDS等手段探究了其残炭的形态,利用热重分析法分析了其燃烧特性、混煤燃烧特性及反应动力学.结果 表明:BL中的残炭多分布在大粒径颗粒中,BL1,BL2,BL3中的残炭形态对应着其在气化炉内经历的不同气化历程;热重对比分...  相似文献   

4.
赵利杰  张彤  黄伟  苏壮飞  刘泽 《硅酸盐通报》2022,41(10):3542-3547
在煤气化粗渣基地质聚合物中复掺矿渣可改善其早期力学性能。本文以煤气化粗渣和矿渣为原料制备地质聚合物,系统研究了不同矿渣掺量对煤气化粗渣基地质聚合物早期力学性能及微观结构的影响。利用X射线衍射、压汞测试、扫描电镜、傅里叶红外光谱等方法对煤气化粗渣-矿渣基地质聚合物的微观结构进行分析表征。结果表明,当矿渣掺量增加时,地质聚合物抗压强度呈逐渐增大趋势。矿渣掺量为40%(质量分数)时,样品28 d抗压强度高达53.1 MPa。由微观分析可知,掺入矿渣后地质聚合物表面生成了大量水化硅铝酸钙/钠(C(N)-A-S-H)凝胶,使地质聚合物微观结构更为致密,力学性能得到改善。  相似文献   

5.
煤气化渣是由煤气化工艺产生的一种富含铝硅酸盐、灰组分及残炭的大宗工业固体废弃物,其规模化生产对生态环境造成了严重的影响。因此,将煤气化渣进行炭-灰分离是实现其减量化、无害化和资源化利用的关键。以煤气化渣为研究对象,采用高效解离-选择性絮凝耦合作用的工艺,为实现煤气化渣更为合理、高效的资源化利用,减少煤气化渣带来的土壤、空气、水体资源等污染问题,对煤气化渣进行提炭实验研究。首先分析了煤气化渣的理化性质,其次采用单因素变量法探究了磨矿时间、pH、絮凝剂种类、絮凝剂用量、高速剪切转速对煤气化渣提炭实验的影响,以实现残余炭产品的高度富集。结果表明:原煤气化渣灰分质量分数为67.19%,普通湿筛筛上物料灰分质量分数为54.3%,当煤气化渣磨矿时间为5 s, pH为7,絮凝剂聚氧化乙烯用量为0.4 kg/t,在转速为4 000 r/min高速剪切15 min的条件下提炭效果最佳,最终可获得产率为26.6%、湿筛筛上灰分质量分数为43.3%的残炭产品。对比普通湿筛法,基于高效解离-选择性絮凝实验方法在普通湿筛的基础上灰分质量分数降低了11%,降灰效果明显。  相似文献   

6.
我国能源结构特点为富煤、贫油、少气,煤化工行业发展充满机遇和挑战。煤气化技术是现代煤化工的前端支柱,是实现煤炭清洁、高效、绿色、低碳利用的有效途径,具有重要的国家战略意义。煤气化技术规模化应用产生的大量固体废弃物(煤气化渣)的处置,是煤化工基地当前迫切需要解决的问题。分别从国内具代表性煤化工基地的气化灰渣粒度组成、矿物构成、微观形貌、表面性质和持水特性等理化性质入手,对比分析不同炉型、产地、气化工艺等条件下的灰渣特点。灰渣物性特点的差异化与气化工艺、炉型、煤种等因素均相关。灰渣主要组分为硅铝矿物等,其中粗渣粒度普遍偏大;细渣残炭质量分数一般在20%左右,且其表面含氧官能团丰富。此外,细渣因其孔隙率高,含水率较高。基于气化灰渣理化性质,系统归纳了目前报道的气化灰渣提质方法,提出炭-灰分离是实现气化灰渣减量化与资源化利用的重要前提。从高效回收微细粒矿物角度考虑,浮选是最合适的炭-灰分离方法,但由于残炭发达的孔隙结构与含氧亲水性基团的存在导致可浮性差,目前生产成本较高;从降低生产成本、提高处理量角度考虑,重力分选方法是首选,但存在分选下限高的问题;而磁力分选则对铁磁性矿物含量高的灰渣更具有针...  相似文献   

7.
利用电石渣生产水泥的研究   总被引:2,自引:0,他引:2  
1 电石渣的性能 电石渣是电石(CaC2)水解后产生的废渣.电石渣的主要成分是Ca(OH)2,PH值>13.电石渣中的细颗粒较多,1~50 μm颗粒为60%~80%.电石渣由于产地不同其化学成分有一定的变化. 由表1可以看出各地的电石渣有差异,CaO含量一般高于60%;SO3含量小于0.8%;碱性氧化物含量小于0.8%:Cl-含量变化较大.天聚化工电石渣由于电石消解不完全.残留CaCO3较多,相应的烧失量高,而CaO含量低.  相似文献   

8.
煤化工气化工艺会产生大量气化细渣,其含碳量高、烧失量大,不符合建筑掺混原料国家标准和行业标准,产量巨大的气化细渣因缺乏有效的规模化消纳方式,成为现阶段制约煤化工企业可持续发展的重要因素。通过对一种低挥发分低热值燃料恒温预热-脱碳装置的预热脱碳工艺进行机理研究,利用热重试验平台进行恒温热重试验,对低挥发分、低热值燃料恒温预热-脱碳装置内部燃烧过程进行模拟,以对比分析不同预热温度、不同燃烧气氛下粒径分级气化细渣的燃烧特性。研究发现,通入氧气后,气化细渣样品迅速发生氧化反应,900℃、10%O_2下燃尽时间在6.6~9.4 min, 900℃、21%O_2下燃尽时间在3.7~5.6 min,因此在保证NO_x排放量在规定范围的条件下,可适当提高窑内燃烧区氧浓度以缩短燃尽时间。随预热温度的升高,同粒度分级的气化细渣样品的平均质量变化速率增大,燃尽时间缩短,预热温度的提高可改善气化细渣的燃尽特性,在设备安全运行下可适当提高燃烧区温度以更快燃尽。不同燃烧气氛、不同预热温度下,随气化细渣粒度增大,失重量增大,燃尽时间延长,平均质量变化速率递减,该"预热-脱碳装置"可根据物料粒度合理调整物料停留时间实现充分燃尽。  相似文献   

9.
精炼钢包渣线使用含炭耐火材料存在着使钢水增碳的问题 ,需要研制抗渣侵蚀和渗透能力较强的无炭钢包渣线材料。以轻烧氧化镁和锆英石为原料 ,采用湿法共磨工艺 ,合成了镁锆质熟料 ,并以此合成料为主要原料 ,加入工业Cr2 O3细粉、锆英石细粉及硅微粉等研制了无炭的镁锆铬质钢包浇注料。实验证明 ,制得的镁锆铬质浇注料高温强度较高 ,高温收缩率较小 ,抗渣侵蚀和渗透能力较强。  相似文献   

10.
以气流床煤气化粗渣和细灰为原料,采用筛分和磁选的方法研究了磁性灰粒在不同粒级气化灰渣中的分布特性。结果表明:随着灰渣粒径的减小,在粗渣和细灰中,磁性灰粒的含量均呈现先升高后降低的趋势,磁性灰粒在粗渣中的含量高于细灰。粗渣中,磁性灰粒在0.5~0.25mm粒级中分布最多,该粒级神宁炉和GSP气化炉粗渣在粒度组成中的占比也最高,质量分数分别为38.42%和37.16%,各个粒级中磁性灰粒产率随粒径减小呈递增趋势;细灰中,磁性灰粒在0.074~0.045mm粒级中分布最多,而细灰粒度组成中的占比最高的却是大于0.25mm粒级,磁性灰粒产率在各个粒级都不高,呈现随粒径减小而升高的规律。气化过程中,磁铁矿会更多地富集在凝结团聚且高度玻璃化的大粒径粗渣中,粗渣和细灰中仍有相当量的含铁物相不显磁性。不同粒级煤气化灰渣中磁性灰粒的分布特性可为气化渣分级分质及高值化利用提供基础数据支撑和应用思路。  相似文献   

11.
余润翔  张彤  杨岩  刘泽  王群英 《硅酸盐通报》2022,41(12):4318-4323
煤气化渣与粉煤灰均为煤炭资源利用过程中产生的固体废弃物,可以应用在碱激发领域。从煤气化粗渣的性质入手,采用粉煤灰对煤气化粗渣进行改性,利用碱激发技术制备了煤气化粗渣-粉煤灰基地质聚合物,并对所制备产物的性能进行研究。结果表明,在体系中掺入粉煤灰可以明显改善其力学性能,当粉煤灰掺入量为30%(质量分数)时,样品的28 d抗压强度最高,达到44.5 MPa。此外,通过对样品进行物相分析与微观形貌表征发现,样品的无定形产物主要为N(C)-A-S-H凝胶,它能够结成相互连接的空间网状结构,具有较强的黏结能力,这是样品材料具有较高强度的主要原因。  相似文献   

12.
对煤气化细渣的浮选脱碳进行了研究。因煤气化细渣含残炭量高,制约了煤气化细渣的应用;而煤气化细渣的矿物组成和润湿性能与粉煤灰的指标大体相似,粉煤灰浮选已经工业化,气化细渣也具有浮选脱碳的可行性。通过分析论证发现,浮选脱碳是煤气化细渣脱碳的合适方法;气化细渣粒度微细,分布范围广,应采用分级浮选方法脱碳;对于40μm以下的颗粒,适合采用旋流-微泡浮选柱,而对于40μm以上的颗粒,适合采用机械搅拌式浮选机进行浮选。  相似文献   

13.
煤气化利用过程中会产生大量气化渣,造成很大的环境污染,其综合利用势在必行。本文系统分析了煤气化渣不同密度组分的特性,明确了炭-灰分离是煤气化渣分质综合利用的前提与基础,并提出了基于视密度差异的炭-灰分离方法。以水介质旋流器为分选设备,通过单因素试验确定了主要工艺参数对炭-灰分离效果的影响规律,验证了水介质旋流分选对煤气化渣>0.074mm粒级炭-灰分离的可行性。借助Box-Behnken试验设计分析了旋流器锥体角度、底流口直径、溢流管插入筒体深度与产品灰分、产品产率及分选综合效率的定量关系,为煤气化渣炭-灰分离效果的预测及旋流器结构参数的选择提供了数据支持。本文研究内容对实现煤气化渣分质资源化利用具有指导意义。  相似文献   

14.
粉煤灰浮选脱碳试验研究   总被引:1,自引:0,他引:1  
针对山东省胶南市双星热电厂产生的粉煤灰含炭量高而不能直接利用的现状,对其进行了浮选脱碳试验研究.通过小型浮选试验,确定了"一粗,一扫"的浮选流程,浮选脱炭后尾灰烧失量降低为4%以下.  相似文献   

15.
煤气化过程中产生大量含碳量较高的气化细渣,其填埋处理不仅占用大量土地,污染土壤和水体,同时造成能源浪费,如何高效环保地对气化细渣进行资源化利用是目前研究的热点。在获得气化细渣工业分析、元素分析、粒径分布、灰成分和微观形貌等基础上,利用热重对气化细渣单独燃烧及与燃料煤混合燃烧特性进行研究,对比了气化细渣与典型煤种燃烧特性的差异,并考虑掺混比例对混燃的影响。研究结果表明:气化细渣的M_(ar)=69. 7%,A_d=54. 5%,w(C_d)=43. 4%,Q_(gr,d)=16. 14 MJ/kg,干化后的气化细渣中碳含量和发热量与对比劣质烟煤相当;干燥后的气化细渣粒径普遍小于200μm,且孔隙结构发达,电镜结果显示其微观结构由球形颗粒和不规则多孔形状颗粒组成。气化细渣与其他煤种燃烧特性对比表明:气化细渣的着火温度和燃尽温度分别为601. 6℃和680. 8℃,着火和燃尽特性比对比煤样和对应的原煤略差。气化细渣和原煤在不同掺烧比例下的热重燃烧试验结果表明,气化细渣和原煤掺烧存在显著的协同效应,与原煤掺烧能显著改进气化细渣的燃烧特性,在25%气化细渣掺烧比例下,气化细渣的燃烧特性得到显著改善,且相比于纯烧原煤,掺烧气化细渣后混煤的燃烧特性未显著下降。研究结果表明,干化后高含碳量的气化细渣极具应用价值,且与原煤掺烧对混煤的燃烧特性影响较小,还能显著改进混煤的燃烧特性,将干化后的气化细渣与原煤掺烧是一种可行的利用气化细渣热值的技术方案。  相似文献   

16.
煤气化渣可分为粗渣和细渣,其有在碱激发领域应用的潜力。本文对煤气化粗渣的理化性能进行了研究,使用煤气化粗渣制备了地质聚合物,并对其进行了TiO2的改性研究。结果表明,在煤气化粗渣基地质聚合物中掺入一定量的TiO2可明显改善其力学性能。当掺入质量分数为10.0%的TiO2时,样品28 d的抗压强度可从23.4 MPa提高到42.9 MPa。此外,通过对样品进行物相分析与微观结构分析, TiO2的掺入明显改善了地质聚合物的微观结构,促进了碱激发反应,提高了材料的力学性能。  相似文献   

17.
湘南某电厂采用低品位无烟煤燃烧发电,粉煤灰利用率低.究其原因是粉煤灰烧失量高、颗粒粗,其资源再利用性能较差.  相似文献   

18.
硫酸烧渣生产氧化球团可行性的试验研究   总被引:3,自引:0,他引:3  
当硫酸烧渣的铁含量提至约60%时,其可作为炼铁原料。因此,就硫酸烧渣生产炼铁用氧化球团进行了研究。研究结果表明,如果硫酸烧渣中铁含量达约60%,经几十分钟细磨后,和磁铁矿粉、添加剂混合后可满足生产氧化球团的原料要求;细磨硫酸烧渣比例<65%时,其造粒球团的各项指标能达竖炉和高炉的生产要求。烘干球平均抗压强度均在100 N以上,烘烤球平均抗压强度在120 N以上,焙烧球抗压强度均在4 000 N以上。  相似文献   

19.
铁铬渣是以铬铁矿为原料生产金属铬和铬盐后产生的工业废渣。经硫酸亚铁湿法解毒的铁铬渣仍然具有一定的火山灰活性,可作混凝土矿物掺合料使用。然而由于湿法解毒铁铬渣含有水溶性铬(Ⅵ),影响了其建材化资源利用。研究了湿法解毒铁铬渣的粒径分布、火山灰活性;以湿法解毒铁铬渣作为矿物掺合料代替粉煤灰用于C30混凝土,考察了混凝土的工作性能、力学性能和水溶性铬(Ⅵ)的浸出量。结果表明:湿法解毒铁铬渣的粒径主要分布在1~20 μm,28 d活性指数达到68%;当湿法解毒铁铬渣取代20%(以质量分数计)粉煤灰时,混凝土坍落度增加了38.2%,7 d和28 d强度分别增加了7%和6%;混凝土浸出液中水溶性铬(Ⅵ)的浓度,根据标准的不同其要求也不同。湿法解毒铁铬渣有作为矿物掺合料的可能性,但是需要考虑其水溶性铬(Ⅵ)的浸出量,以确保混凝土的安全使用。  相似文献   

20.
利用贵州省黔东南州某石煤提钒厂废渣为主要原料制备CaO-A12O3-SiO2系微晶玻璃,对样品进行DSC、XRD、SEM以及其它性能测试,探讨了钒渣掺入量对微晶玻璃晶化过程和微观结构的影响.实验结果表明:基础玻璃的DSC曲线确定核化与晶化温度分别为850℃和1050℃;对样品进行XRD分析,发现其主晶相为β-硅灰石,随着钒渣掺入量的增加,样品主晶相不发生变化.钒渣微晶玻璃的废渣最大掺入量可达68.92%,制备出的样品表面排列紧密,气孔率低,抗折强度、吸水率及莫氏硬度明显优于天然石材.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号