首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Lead-acid batteries operated in the high-rate partial-state-of-charge (HRPSoC) duty rapidly lose capacity on cycling, because of sulfation of the negative plates. As the battery operates from a partially discharged state, the small PbSO4 crystals dissolve and precipitate onto the bigger crystals. The latter have low solubility and hence PbSO4 accumulates progressively in the negative plates causing capacity loss. In order to suppress this process, the rate of the charge process should be increased.In a previous publication of ours we have established that reduction of Pb2+ ions to Pb may proceed on the surface of both Pb and carbon black particles. Hence, the reversibility of the charge-discharge processes improves, which leads to improved cycle life performance of the batteries in the HRPSoC mode. However, not all carbon forms accelerate the charge processes. The present paper discusses the electrochemical properties of two groups of carbon blacks: Printex and active carbons. The influence of Vaniseprse A and BaSO4 (the other two components of the expander added to the negative plates) on the reversibility of the charge-discharge processes on the negative plates is also considered. It has been established that lignosulfonates are adsorbed onto the lead surface and retard charging of the battery. BaSO4 has the opposite effect, which improves the reversibility of the processes on cycling and hence prolongs battery life in the HRPSoC duty. It has been established that the cycle life of lead-acid cells depends on the type of carbon black or active carbon added to the negative plates. When the carbon particles are of nano-sizes (<180 nm), the HRPSoC cycle life is between 10,000 and 20,000 cycles. Lignosulfonates suppress this beneficial effect of carbon black and activated carbon additives to about 10,000 cycles. Cells with active carbons have the longest cycle life when they contain also BaSO4 but no lignosulfonate. A summary of the effects of the three expander components on the elementary processes during charge of negative lead-acid battery plates is presented at the end of the paper.  相似文献   

2.
归纳和总结锂离子电池和电池组模型、电池成组和电池一致性优化控制的研究方法和存在的问题。同时,对电池一致性管理研究趋势进行展望。提出应根据储能系统实际运行工况和电池成组方式,充分考虑电池连接方式、极柱引出位置、连接件阻抗等,优化电池组模型,提高模型精度。并根据模拟和实验结果,优化电池成组方式和控制策略,解决制约储能产业发展的电池组技术瓶颈。  相似文献   

3.
Cells with and without a LiC2O4BF2 electrolyte additive and that contained Li1.05(Mn1/3Co1/3Ni1/3)0.95O2 (NMC) positive electrodes were tested for calendar and cycle life at 60% state of charge. The temperatures used in these tests were 25 and 45 °C (cycle life) and 45 and 55 °C (calendar life). An analysis of the C/25 capacity data shows that the C/25 capacity decreases with the square root of time. The additive slowed down the rate of capacity decline.The C/25 data were subjected to differential voltage analysis to determine the possible cause of the capacity decrease and at which electrode the capacity decrease was occurring. Data from full cells and half-cells were compared to elucidate individual electrode contributions. This analysis indicated that lithium-capacity-consuming side reactions were occurring primarily at the negative electrode.  相似文献   

4.
The fabrication of flexible nickel-based cable batteries is presented. Different fabrication methods, as well as formulations, were studied. It was found that iron anodes were more suitable than zinc electrodes for the helix design used in the cable/rope-shaped cells, possibly due to their higher stability in the alkaline environment. Furthermore, the addition of a thin polytetrafluoroethylene (PTFE) layer to the electrodes enhanced their mechanical stability, making them more durable and stable when twisted into helixes during cell assembly and packaging. A single-step precipitation reaction was used to load iron oxides directly onto carbon nanotubes, which promoted contact between iron/iron oxide particles and conductive additives and thus improved the discharge capacity of the batteries. After optimizations, the typical iron anode showed initial specific capacity higher than 90 mAh g−1, though it decreased to around 60 mAh g−1 and remained more stable as cycles continued. The cable cells also remained functional and showed consistent performance under bent conditions.  相似文献   

5.
赵德骥  冯玉龙  缪光辉  杨璇  李骁  石伟 《柴油机》2021,43(4):6-9, 42
依照中国船级社《纯电池动力船舶检验指南》(CCS GUIDANCE NOTES GD22-2019)要求,设计了一种船舶通用型电池管理系统.针对大容量电池系统电池荷电状态估算不准确问题,开发了一种扩展的卡尔曼滤波算法.经试验验证,所设计的电池管理系统能够满足船用要求;所采用的SOC算法能够较准确地估算出电池剩余电量.  相似文献   

6.
MgH2 has been considered as a potential anode material for Li ion batteries due to its low cost and high theoretical capacity. However, it suffers from low electronic conductivity and slow kinetics for hydrogen sorption at room temperature that results in poor reversibility, cycling stability and rate capability for Li ion storage. This work presents a MgH2–TiF3@CNT based Li ion battery anode manufactured via a conventional slurry based method. Working with a liquid electrolyte at room temperature, it achieves a high capacity retention of 543 mAh g?1 in 70 cycles at 0.2 C and an improved rate capability, thanks to the improved hydrogen sorption kinetics with the presence of catalytic TiF3. Meanwhile, the first realization of Na ion uptake in MgH2 has been evidenced in experiments.  相似文献   

7.
钠硫电池,钠-氯化镍电池(ZEBRA电池)和钠-空气电池等一类以金属钠作负极,通过钠离子在正负极之间传导和得失电子而实现电能和化学能转换的电池,统称为钠电池.本文综述了钠硫电池,ZEBRA电池和钠-空气电池等钠电池的研究和开发现状,包括各种钠电池的结构,工作原理和性能特性以及目前研发进展的介绍,它们面临的主要问题的分析,最后指出它们今后的发展趋势.  相似文献   

8.
Lateral flow test assay requires integrated micro power sourcesto realize quantitative testing as well as to enhance accuracy. Conventional dry batteries generally havepollution issues for this task, while the recently emerged paper-based fuel cells are both expensive and low-voltage that restrict their usage. In comparison, the metal-air battery (MAB) using a metal anode and an air-breathing cathode could be a much better solution. In this study, different micro metal-air batteries are integrated onto paper substrates, producing micro power sources that are low-cost, high-voltage and environmentally friendly. Their performances are compared under both alkaline and salt electrolytes in terms of power output, fabrication cost and specific energy. Among them, the Al-air battery with an alkaline electrolyte and the Mg-air battery with a salt electrolyte are more advantageous than others, achieving high voltage outputs of 1.55 V and 1.53 V at 1 mA cm?2, respectively. By using acarbon grid instead of asilver grid as current collector, and nitrogen-doped carbon nanotubesinstead of MnO2 as oxygen reduction catalyst, the as-fabricated micro MABs can be much cheaper and greener for disposable lateral flow test devices. Finally, a two-cell micro Al-air battery pack, which is integrated into a digital pregnancy tester, provides powersuccessfully for its operation for more than 5 minutes.  相似文献   

9.
化学电源又称电池,作为一种载能的装置或系统,一方面可以将物质储存的化学能转化为电能,另一方面也可以将过剩的电能以化学能的形式进行储存,在能源供给和能源储存等方面发挥着愈来愈重要的作用,成为目前新能源发展和利用的重要一环。本文介绍了12种不同类型的化学电源,对它们的发展历程、工作原理、性能特点和应用领域进行综述,并结合目前我国对移动动力电源以及大规模电网储能系统的需求,对未来化学电源的发展方向进行了展望。  相似文献   

10.
Use of lithium-ion batteries in electric vehicles   总被引:11,自引:0,他引:11  
An account is given of the lithium-ion (Li-ion) battery pack used in the Northern Territory University's solar car, Fuji Xerox Desert Rose, which competed in the 1999 World Solar Challenge (WSC). The reasons for the choice of Li-ion batteries over silver–zinc batteries are outlined, and the construction techniques used, the management of the batteries, and the battery protection boards are described. Data from both pre-race trialling and race telemetry, and an analysis of both the coulombic and the energy efficiencies of the battery are presented. It is concluded that Li-ion batteries show a real advantage over other commercially available batteries for traction applications of this kind.  相似文献   

11.
提高动力电池的能量密度将显著延长续航里程,对发展电动汽车具有重要的意义.中国科学院在2013年底部署了中国科学院战略性先导科技专项,通过合作研究,积极探索了第三代锂离子电池,固态锂电池,锂-硫电池和锂-空气电池等电池体系.其中,采用纳米硅碳负极,富锂正极的24 A·h的锂离子电池单体,质量能量密度达到374 W·h/kg,体积能量密度达到577 W·h/L.8 A·h固态聚合物锂电池60 ℃下能量密度达到240 W·h/kg,基于无机陶瓷固态电解质的固态锂电池室温下能量密度达到240 W·h/kg.37 A·h的锂硫电池单体室温能量密度达到566 W·h/kg,50 ℃达到616 W·h/kg.5 A·h锂空气电池单体能量密度达到526 W·h/kg.目前这些样品电池在综合技术指标方面离实际应用还有较大的距离,需要进一步深入细致的进行基础科学与关键技术方面的研究.从长远考虑,电池能量密度的提高必然进一步增加电池安全性风险,因此不同形式的固态锂电池将是未来长续航动力锂电池的发展方向.  相似文献   

12.
This study investigates the influence of the organic expander component (Vanisperse A) and of BaSO4 on the performance of negative lead-acid battery plates on high-rate partial-state-of-charge (HRPSoC) cycling. Batteries operating in the HRPSoC mode should be classified as a separate type of lead-acid batteries. Hence, the additives to the negative plates should differ from the conventional expander composition. It has been established that lignosulfonates are adsorbed onto the lead surface and thus impede the charge processes, which results in impaired reversibility of the charge-discharge processes and hence shorter cycle life on HRPSoC operation, limited by sulfation of the negative plates. BaSO4 exerts the opposite effect: it improves the reversibility of the processes in the HRPSoC mode and hence prolongs the cycle life of the cells. The most pronounced effect of BaSO4 has been registered when it is added in concentration of 1.0 wt.% versus the leady oxide (LO) used for paste preparation. It has also been established that BaSO4 lowers the overpotential of PbSO4 nucleation. The results of the present investigation indicate that BaSO4 affects also the crystallization process of Pb during cell charging. Thus, BaSO4 eventually improves the performance characteristics of lead-acid cells on HRPSoC cycling.  相似文献   

13.
State-of-the-art of alkaline rechargeable batteries   总被引:3,自引:0,他引:3  
Alkaline rechargeable batteries represented by Ni–Cd and Ni–MH batteries are expanding their market, continuously meeting an increasing demand. Approximately 30 years have elapsed since the first sealed Ni–Cd battery was commercialized for consumer use, and the production of these alkaline batteries is still expanding. The high power performance and good cost performance of these batteries are the outstanding features, which are leading to new battery applications. Continuous R&D of many researchers and engineers has improved these features. Since first coming to the market in 1990, Ni–MH batteries have been extending their application as power sources for portable advanced information and communication equipment. Improvements in electrode materials and other components have increased the energy density of current Ni–MH batteries to values of 91 Wh/kg and 340 Wh/l. Recently, novel metallic alloys for hydrogen storage have been proposed to increase their capacity further, and further improvement in the performance of these batteries is expected.  相似文献   

14.
安全性是制约锂离子电池规模应用的重要技术问题。锂离子电池的安全性能不仅仅与材料体系、电芯设计相关,还会随着使用过程而发生变化。锂离子电池安全性能在全生命周期内的演变规律需要重点展开研究,以保障电池在使用过程中的安全性。本文对锂离子电池全生命周期安全性演变问题的国内外研究进展进行了综述,分析了国内外关于电池安全性能在循环老化和储存老化两种工况下的演变规律的研究,总结了电池老化衰减机理与安全性能变化之间的关系,指出负极析锂是影响电池全生命周期安全性能的重要因素,最后对锂离子电池全生命周期安全性演变研究进行了展望。  相似文献   

15.
锂离子电池由于其在能量密度、循环寿命、能量效率、安全性等方面的综合优势,成为了应用最广泛的电化学储能器件,然而其性能仍有进一步提升的必要。大量的先进表征技术应用在锂电池研究中,有力推动了锂离子电池基础理论的进步。超声作为一种无损表征手段,具有灵敏度高、成本低、使用方便、速度快等优点,在电池特性表征领域具有巨大的应用潜力。本文总结概述了现有超声检测技术在电池表征领域的应用,包括内部气体检测、电解液浸润测试、电池析锂检测、电池荷电状态测量、电池寿命预测等,对其发展前景进行了展望。  相似文献   

16.
在众多储能技术中,锂离子电池以其能量密度大、能量转换效率高、循环寿命长、应用范围广、对环境友好等优势,成为当前最具应用前景的电力系统电池储能技术之一。但现有锂离子电池体系无法从本质上保证其安全性,在使用过程中具有发生热失控乃至燃烧、爆炸等安全事故的风险。本文就锂离子电池的热失控机理、电池本体的安全设计、安全预警、电池组热失控起火的阻燃装置以及消防安全的研究进展进行了综述。  相似文献   

17.
In 1860, the Frenchman Gaston Planté (1834-1889) invented the first practical version of a rechargeable battery based on lead-acid chemistry—the most successful secondary battery of all ages. This article outlines Planté’s fundamental concepts that were decisive for later development of practical lead-acid batteries. The ‘pile secondaire’ was indeed ahead its time in that an appropriate appliance for charging the accumulator was not available. The industrial success came after the invention of the Gramme machine. In 1879, Planté obtained acceptance for his work by publishing a book entitled Recherches sur lElectricité. He never protected his inventions by patents, and spent much of his fortune on assisting impoverished scientists.  相似文献   

18.
根据储能用胶体电解液式铅酸蓄电池的性能特点,结合光伏发电系统的实际应用情况,从环境适应能力、荷电保持能力、抗欠充电能力、容量一致性、安全环保等方面分析了胶体电解液式铅酸蓄电池在光伏发电系统中的应用性能,并通过实际应用案例,分析并得出胶体铅蓄电池是光伏系统储能用电池理想选择的结论,同时为胶体铅酸蓄电池在光伏系统中的应用指出了进一步研究的方向。  相似文献   

19.
该文是一篇近两个月的锂电池文献评述,以"lithium"和"batter*"为关键词检索了Web of Science从2018年10月1日至2018年11月30日上线的锂电池研究论文,共有4397篇,选择其中100篇加以评论。正极材料主要研究了层状材料的结构演变及表面包覆对层状和尖晶石材料循环寿命的影响。金属锂负极的研究主要分析表面层覆盖对循环性能的影响,固态电解质、锂空电池、锂硫电池也有多篇,全固态电池的研究论文包括结构设计和界面改性。理论模拟工作包括材料体相、界面结构和输运性质,除了以材料为主的研究之外,针对电池的原位分析、电池模型的研究论文也有多篇。  相似文献   

20.
该文是一篇近两个月的锂电池文献评述,我们以"lithium"和"batter*"为关键词检索了Web of Science从2013年10月1日至2013年11月30日上线的锂电池研究论文,共有628篇,因从上月起Web of Science不提供按文章上线时间的查询功能,本期搜索可能遗漏偏多,因此文章总篇数偏少,我们仅选择其中75篇加以评论.层状氧化物正极材料的研究包括充放电循环过程中的结构衍变以及表面改性研究,高电压尖晶石结构LiNi0.5M1.5O4材料的研究偏重于掺杂和表面改性,尖晶石LiMn2O4的工作包括改变前驱体和优化合成条件的研究,聚阴离子正极材料的研究偏重于高电压材料,负极研究以硅基负极材料为主,还包括钛酸锂,硬碳材料和合金化负极等.电解质的研究包括聚合物固体电解质,无机固体电解质以及锂盐特性分析.锂空气电池研究论文有多篇,电池分析方面包括热模型,寿命模型和阻抗分析等.理论计算包括力学分析,扩散过程和界面分析等.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号