共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
《International Journal of Hydrogen Energy》2023,48(50):19046-19059
Establishing an industrial park-integrated energy system (IN-IES) is an effective way to reduce carbon emission, reduce energy supply cost and improve system flexibility. However, the modeling of hydrogen storage in traditional IN-IES is relatively rough. In order to solve this problem, an IN-IES with hydrogen energy industry chain (HEIC) is proposed in this paper. Hydrogen production, transportation, and storage technologies are applied in HEIC. Firstly, a novel long-term hydrogen storage model considering different time steps is presented. Secondly, hydrogen compressor models considering different pressure ratios are further employed. On this basis, the impact of the HEIC on the planning and operation results of IN-IES is studied. Finally, the superiority and the effectiveness of the proposed model and planning method are verified by simulation cases. 相似文献
3.
Ahmed Bilal Awan Muhammad Zubair Guftaar Ahmed Sardar Sidhu Abdul Rauf Bhatti Ahmed G. Abo‐Khalil 《国际能源研究杂志》2019,43(12):6296-6321
The aim of this research is to analyze the techno‐economic performance of hybrid renewable energy system (HRES) using batteries, pumped hydro‐based, and hydrogen‐based storage units at Sharurah, Saudi Arabia. The simulations and optimization process are carried out for nine HRES scenarios to determine the optimum sizes of components for each scenario. The optimal sizing of components for each HRES scenario is determined based on the net present cost (NPC) optimization criterion. All of the nine optimized HRES scenarios are then evaluated based on NPC, levelized cost of energy, payback period, CO2 emissions, excess electricity, and renewable energy fraction. The simulation results show that the photovoltaic (PV)‐diesel‐battery scenario is economically the most viable system with the NPC of US$2.70 million and levelized cost of energy of US$0.178/kWh. Conversely, PV‐diesel‐fuel cell system is proved to be economically the least feasible system. Moreover, the wind‐diesel‐fuel cell is the most economical scenario in the hydrogen‐based storage category. PV‐wind‐diesel‐pumped hydro scenario has the highest renewable energy fraction of 89.8%. PV‐wind‐diesel‐pumped hydro scenario is the most environment‐friendly system, with an 89% reduction in CO2 emissions compared with the base‐case diesel only scenario. Overall, the systems with battery and pumped hydro storage options have shown better techno‐economic performance compared with the systems with hydrogen‐based storage. 相似文献
4.
氢能制取和储存技术研究发展综述 总被引:1,自引:0,他引:1
综述了氢能制取和储存技术研究的最新发展现状。生物质制氢、太阳能热化学循环制氢、太阳能半导体光催化制氢、核能制氢等技术具有资源丰富、使用可再生能源的优点,能克服传统电解水制氢能耗高和矿物原料有限的缺点,成为提高制氢效率、实现规模生产的研究重点。加压压缩储氢技术的研究进展主要体现在改进容器材料和研发吸氯物质方面;液化储氢技术研发重点是降低能耗和成本;金属氢化物储氢技术正努力突破储氢密度低的难题。氢能制取、储存技术正在走向实用阶段,重点技术方向是以水为原料,实现大规模、经济、高效和安全地制氢储氢,推动氢能可持续和洁净的利用,促进能源安全。 相似文献
5.
The demand of electric energy is increasing globally, and the fact remains that the major share of this energy is still being produced from the traditional generation technologies. However, the recent trends, for obvious reasons of environmental concerns, are indicating a paradigm shift towards distributed generation (DG) incorporating renewable energy resources (RERs). But there are associated challenges with high penetration of RERs as these resources are unpredictable and stochastic in nature, and as a result, it becomes difficult to provide immediate response to demand variations. This is where energy storage systems (ESSs) come to the rescue, and they not only can compensate the stochastic nature and sudden deficiencies of RERs but can also enhance the grid stability, reliability, and efficiency by providing services in power quality, bridging power, and energy management. This paper provides an extensive review of different ESSs, which have been in use and also the ones that are currently in developing stage, describing their working principles and giving a comparative analysis of important features and technical as well as economic characteristics. The wide range of storage technologies, with each ESS being different in terms of the scale of power, response time, energy/power density, discharge duration, and cost coupled with the complex characteristics matrices, makes it difficult to select a particular ESS for a specific application. The comparative analysis presented in this paper helps in this regard and provides a clear picture of the suitability of ESSs for different power system applications, categorized appropriately. The paper also brings out the associated challenges and suggests the future research directions. 相似文献
6.
An intelligent control system was developed using simple control methodologies for an H2-powered fuel cell scooter with the aid of a built-in microprocessor. This system increases the power input to drive a hydrogen fuel cell scooter, particularly during uphill conditions by running both the batteries and the fuel cell source in parallel. This system also improves the energy management of the scooter by recharging the battery using the fuel cell as well as automatic switching to the battery source when the hydrogen fuel cell is running low on hydrogen. This system was tested on a bench set simulating a 254 W hydrogen fuel cell stack equipped on a 200 W scooter. The test rig set-up depicts a practical scooter running on various load conditions. These results reflect the efficiencies of actual running conditions. The entire operation was embedded in a PICAXE-18 microcontroller for automatic switching between the batteries and the fuel cell source. An increase in the DC motor efficiency by 6 % has been shown. The uphill angle of the scooter has been increased by 19.3 %, which means the scooter would be able to travel on steeper hills. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
7.
Developing green energy solutions has become crucial to society. However, to develop a clean and renewable energy system, significant developments must be made, not only in energy conversion technologies (such as solar panels and wind turbines) but also regarding the feasibility and capabilities of stationary electrical energy storage (EES) systems. Many types of EES systems have been considered such as pumped hydroelectric storage (PHS), compressed air energy storage (CAES), flywheels, and electrochemical storage. Among them, electrochemical storage such as battery has the advantage of being more efficient compared to other candidates, because it is more suitable in terms of the scalability, efficiency, lifetime, discharge time, and weight and/or mobility of the system. Currently, rechargeable lithium ion batteries (LIBs) are the most successful portable electricity storage devices, but their use is limited to small electronic equipment. Using LIBs to store large amounts of electrical energy in stationary applications is limited, not only by performance but also by cost. Thus, a viable battery technology that can store large amounts of electrical energy in stationary applications is needed. In this review, well-developed and recent progress on the chemistry and design of batteries, as well as their effects on the electrochemical performance, is summarized and compared. In addition, the challenges that are yet to be solved and the possibilities for further improvements are explored. 相似文献
8.
氢能已纳入我国能源发展战略。绿氢作为一种绿色二次能源,能够助推实现“双碳”目标。氢气制备和储运是氢能产业链的关键环节。重点阐述了电解水制绿氢和氢能储运的技术类型与发展现状,并对其应用前景和发展趋势进行了分析;提出氢气生产成本和储运方式是限制氢大规模部署的主要技术瓶颈;最后为传统电力企业进入绿氢制备和储运产业提供了一些思考和建议。 相似文献
9.
T.Q. Hua R.K. AhluwaliaJ.-K. Peng M. KromerS. Lasher K. McKenneyK. Law J. Sinha 《International Journal of Hydrogen Energy》2011,36(4):3037-3049
The performance and cost of compressed hydrogen storage tank systems has been assessed and compared to the U.S. Department of Energy (DOE) 2010, 2015, and ultimate targets for automotive applications. The on-board performance and high-volume manufacturing cost were determined for compressed hydrogen tanks with design pressures of 350 bar (∼5000 psi) and 700 bar (∼10,000 psi) capable of storing 5.6 kg of usable hydrogen. The off-board performance and cost of delivering compressed hydrogen was determined for hydrogen produced by central steam methane reforming (SMR). The main conclusions of the assessment are that the 350-bar compressed storage system has the potential to meet the 2010 and 2015 targets for system gravimetric capacity but will not likely meet any of the system targets for volumetric capacity or cost, given our base case assumptions. The 700-bar compressed storage system has the potential to meet only the 2010 target for system gravimetric capacity and is not likely to meet any of the system targets for volumetric capacity or cost, despite the fact that its volumetric capacity is much higher than that of the 350-bar system. Both the 350-bar and 700-bar systems come close to meeting the Well-to-Tank (WTT) efficiency target, but fall short by about 5%. 相似文献
10.
燃料电池用氢气燃料的制备和存储技术的研究现状 总被引:1,自引:0,他引:1
质子交换膜燃料电池(PEMFC)进行反应的燃料是高纯度氢气,氢气的制备和存储是质子交换膜燃料电池能否应用和规模化应用的先决条件和关键技术。对燃料电池用氢气的制备、纯化、存储技术的研究现状进行了综合分析。 相似文献
11.
Because of the unstable and intermittent nature of solar energy availability, a thermal energy storage system is required to integrate with the collectors to store thermal energy and retrieve it whenever it is required. Thermal energy storage not only eliminates the discrepancy between energy supply and demand but also increases the performance and reliability of energy systems and plays a crucial role in energy conservation. Under this paper, different thermal energy storage methods, heat transfer enhancement techniques, storage materials, heat transfer fluids, and geometrical configurations are discussed. A comparative assessment of various thermal energy storage methods is also presented. Sensible heat storage involves storing thermal energy within the storage medium by increasing temperature without undergoing any phase transformation, whereas latent heat storage involves storing thermal energy within the material during the transition phase. Combined thermal energy storage is the novel approach to store thermal energy by combining both sensible and latent storage. Based on the literature review, it was found that most of the researchers carried out their work on sensible and latent storage systems with the different storage media and heat transfer fluids. Limited work on a combined sensible-latent heat thermal energy storage system with different storage materials and heat transfer fluids was carried out so far. Further, combined sensible and latent heat storage systems are reported to have a promising approach, as it reduces the cost and increases the energy storage with a stabilized outflow of temperature from the system. The studies discussed and presented in this paper may be helpful to carry out further research in this area. 相似文献
12.
随着我国能源结构的逐步调整,以风电、光伏为代表的可再生能源发电装机规模和消费比重大幅增加,同时以动力电池汽车为代表的新能源汽车产业正在快速发展,这对传统能源系统提出了巨大的挑战。储能技术可以通过能量的存储与再利用解决上述挑战,但我国的储能产业总体尚处于起步阶段,获得长足的发展进步并使储能产业获得广泛应用仍需时日。本文概述了储能技术的基本类型、评价指标体系、应用与发展趋势,分析了全球典型国家与我国的储能应用情况、配套政策及现存问题,并以此为依据提出了扶持储能产业健康发展的政策建议。 相似文献
13.
储能技术发展概况研究 总被引:3,自引:1,他引:3
我国能源建设面临的主要问题有人均能源储备量少,能源开发利用设备和技术落后,环境污染严重等。因此,研究价值高、应用前景广阔的储能技术,已受到科技界和企业界的密切关注,成为国际能源界研究的热点之一。储能方式主要有物理储能、化学储能、电磁储能和相变储能四大类型,其中物理储能包括抽水蓄能、压缩空气储能、飞轮储能及高温熔岩等;化学储能包括铅酸、锂离子、钠硫和液流等电池储能;电磁储能包括超级电容储能、超导储能和超级电池;相变储能包括蓄热和蓄冷储能等。对储能技术进行分类介绍,对其工作原理、技术现状、发展前景及优缺点进行了讨论,为进一步研究储能技术提供参考。 相似文献
14.
In this paper, we develop and experimentally investigate a novel hybrid ammonia fuel cell and thermal energy storage system. A molten alkaline salt is utilized for storing thermal energy as well as operating an alkaline electrolyte‐based direct ammonia fuel cell. The specific thermal energy storage capacity of the hybrid system is found to be 133 kJ kg?1 at a temperature of 320°C. Furthermore, the maximum power densities are found to be 2.1±0.1 W m?2 to 2.3±0.1 W m?2 for operating temperatures varying between 220°C and 320°C. The energy efficiency is evaluated as 20.6±0.6%, and the exergy efficiency is determined to be 23.3±0.7% at the peak power density. 相似文献
15.
16.
In this theoretical investigation, a hybrid power generation system utilizing wind energy and hydrogen storage is presented. Firstly, the available wind energy is determined, which is followed by evaluating the efficiency of the wind energy conversion system. A revised model of windmill is proposed from which wind power density and electric power output are determined. When the load demand is less than the output of the generation, the excess electric power is relayed to the electrolytic cell where it is used to electrolyze the de‐ionized water. Hydrogen thus produced can be stored as hydrogen compressed gas or liquid. Once the hydrogen is stored in an appropriate high‐pressure vessel, it can be used in a combustion engine, fuel cell, or burned in a water‐cooled burner to produce a very high‐quality steam for space heating, or to drive a turbine to generate electric power. It can also be combined with organic materials to produce synthetic fuels. The conclusion is that the system produces no harmful waste and depletes no resources. Note that this system also works well with a solar collector instead of a windmill. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
17.
A.G. Olabi Adel saleh bahri Aasim Ahmed Abdelghafar Ahmad Baroutaji Enas Taha Sayed Abdul Hai Alami Hegazy Rezk Mohammad Ali Abdelkareem 《International Journal of Hydrogen Energy》2021,46(45):23498-23528
Over the past years, hydrogen has been identified as the most promising carrier of clean energy. In a world that aims to replace fossil fuels to mitigate greenhouse emissions and address other environmental concerns, hydrogen generation technologies have become a main player in the energy mix. Since hydrogen is the main working medium in fuel cells and hydrogen-based energy storage systems, integrating these systems with other renewable energy systems is becoming very feasible. For example, the coupling of wind or solar systems hydrogen fuel cells as secondary energy sources is proven to enhance grid stability and secure the reliable energy supply for all times. The current demand for clean energy is unprecedented, and it seems that hydrogen can meet such demand only when produced and stored in large quantities. This paper presents an overview of the main hydrogen production and storage technologies, along with their challenges. They are presented to help identify technologies that have sufficient potential for large-scale energy applications that rely on hydrogen. Producing hydrogen from water and fossil fuels and storing it in underground formations are the best large-scale production and storage technologies. However, the local conditions of a specific region play a key role in determining the most suited production and storage methods, and there might be a need to combine multiple strategies together to allow a significant large-scale production and storage of hydrogen. 相似文献
18.
《International Journal of Hydrogen Energy》2022,47(60):25155-25201
The world is currently facing a power shortage due to the inadequacy of conventional energy sources and increased energy requirements in almost all sectors of human life. To mitigate this issue, the researchers have taken the considerable interest of researchers over the past decade in enhancing energy efficiency and viability. A hybrid renewable energy system (HRES) can efficiently produce clean energy to meet energy demand. Thus, it is extensively employed to improve power system quality, reliability, and economy, rather than solely relying on non-renewable energy sources. Nevertheless, RE sources' uncertain and intermittent nature, like wind speed and solar radiation, is associated with HRES. This problem can be solved with proper optimization by coupling HRES with energy conversion and storage devices, e.g., electrolyzer, fuel cell, and hydrogen tank, which can admirably balance power generation and energy demand. The literature is rich in employing optimization techniques on HRES with hydrogen technologies (HRES-H2). However, a gap is found in the overall research progress of optimization approaches, considering HRES coupled with H2 equipment. Therefore, the current study comprehensively reviews all the optimization approaches applied in this field worldwide. Further, a text mining-based software VOSviewer is used to investigate the scientific landscape of the literature body to figure out the current trends and future scope of HRES-H2. It has been investigated that the researchers are focusing on: techno-economic optimization of HRES-H2, developing sophisticated hydrogen infrastructure to reduce the overall cost of hydrogen fuel, introducing AI-based multi-objective optimization techniques to make the HRES-H2 system more reliable and economically viable, and the impact of renewable and hydrogen technologies on the reduction of global warming. Lastly, an insightful of the current review highlighting the present shortcomings and opportunities of clean energy and hydrogen has been discussed, and suggestions are provided. 相似文献
19.
《International Journal of Hydrogen Energy》2022,47(74):31927-31940
Proposing a cost-effective off-grid Hybrid Renewable Energy System (HRES) with hydrogen energy storage with a minimum CO2 emission is the main objective of the current study. The electricity demand of an office building is considered to be supplied by Photovoltaic Panels and wind turbines. The office building, modeled in Energy Plus and Open studio, has annual electricity consumption of 500 MWh electricity. 48.9% of the required electricity can be generated via renewable resources. Considering a system without energy storage, the remaining amount of electricity is generated from diesel generators. Hence, for reducing CO2 emission and fuel costs, a hydrogen energy storage system (ESS) is integrated into the system. Hydrogen ESS is responsible for supplying 38.6% of the demand electricity, which means that it can increase the energy supplying ability of the system from 48.9% to 87.5%. In addition to analyzing the application of the hydrogen storage system, the effect of four different kinds of fuel is considered as well. effects of Natural gas, Diesel, Propane, and LPG on the system's application are investigated in this study. Results indicate that natural gas emits less amount of CO2 compared to other fuels and also has a fuel cost of 3054 $/year, while hydrogen ESS is available. For the renewable system without ESS, the fuel cost rises to 10,266 $/year. However, liquid gas, Propane, and LPG have better performance in terms of CO2 emission and fuel cost, respectively. 相似文献
20.
An underwater compressed air energy storage (UWCAES) system is integrated into an island energy system. Both energy and exergy analyses are conducted to scrutinize the performance of the UWCAES system. The analyses reveal that a round‐trip efficiency of 58.9% can be achieved. However, these two analyses identify different directions for further improvement. The heat exchangers, expanders, compressors, electric motors, and generators account for the most exergy destruction. A sensitivity analysis is also conducted to investigate the importance of different input parameters on the round‐trip exergy efficiency of the UWCAES system. The results of both local and global analyses show that the round‐trip exergy efficiency is most sensitive to the isentropic efficiency of the expanders and compressors, and the efficiencies of the electric motors and generators. The impacts of the heat exchangers, the self‐discharge rate of the air accumulator, the inner diameter of the pneumatic pipelines, and the insulation thickness of the hot‐oil tank on the round‐trip exergy efficiency are shown to be highly nonlinear. 相似文献