首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents the application of a hybrid controller to the optimization of the movement of a mobile robot. Through hybrid controller processes, the optimal angle and velocity of a robot moving in a work space was determined. More effective movement resulted from these hybrid controller processes. The experimental scenarios involved a five-versus-five soccer game and a MATLAB simulation, where the proposed system dynamically assigned the robot to the target position. The hybrid controller was able to choose a better position according to the circumstances encountered. The hybrid controller that is proposed includes a support vector machine and a fuzzy logic controller. We used the method of generalized predictive control to predict the target position, and the support vector machine to determine the optimal angle and velocity required for the mobile robot to reach the goal. First, we used the generalized predictive control to predict the target position. Then, the support vector machine is used to classify the angle that must be followed by the mobile robot to reach the goal. Next, a fuzzy logic controller is designed to determine the velocity of the left and right wheels of the mobile robot. Thus generated, the velocity was optimized according to the measures obtained by the support vector machine. Finally, based on the optimal velocity of robot, the output membership function was modified. Consequently, the proposed hybrid controller allowed the robot to reach the goal quickly and effectively.  相似文献   

2.
The paper presents a cascade generalized predictive controller. The cascade control task is performed by one predictive controller and the cascade feature is incorporated in a special predictor. Simulation results are presented comparing the performances of the proposed control algorithm to traditional cascade loops including two PI or two GPC controllers. The paper investigates the effects of noise filter on the robustness of the control loops in the cascade control structure. It shows, that with the proposed predictor it is possible to adjust independently the robustness of the inner and outer loops, meanwhile in the traditional cascade loop there are cross effects in this sense. Finally a real time application of the proposed algorithm is presented: the cascade GPC was tested in the oxygen control loop of an experimental fluidized bed boiler.  相似文献   

3.
The aim of this paper was to propose a recurrent neural network-based predictive controller for robotic manipulators. A neural network controller for a six-joint Stanford robotic manipulator was designed using the generalized predictive control (GPC) and the Elman network. The GPC algorithm, which is a class of digital control method, requires long computational time. This is a disadvantage in real-time robot control; therefore, the Elman network controller was designed to reduce processing time by avoiding the highly mathematical and computational complexity of the GPC. The main reason for choosing the Elman network, amongst several neural network algorithms, was that the presence of feedback loops have a profound impact on the learning capability of the network. The designed neural network controller was able to recover quickly because of its significant generalization capability, which allowed it to adapt very rapidly to changes in inputs. The performance of the controller was also shown graphically using simulation software, including the dynamics and kinematics of the robot model.  相似文献   

4.
基于预测控制的非完整移动机器人视觉伺服镇定   总被引:1,自引:0,他引:1  
非完整移动机器人视觉伺服镇定越来越受到人们的广泛关注. 目前研究人员在解决该问题时未同时考虑摄像机的可见性约束和机器人系统的控制约束, 所设计的控制器在实际应用中很难实现满意的控制. 针对此问题, 本文设计一种预测控制器来解决移动机器人视觉伺服镇定问题. 首先设计运动学预测镇定控制器来产生参考速度指令; 然后设计动力学预测控制器使移动机器人实际速度渐近逼近期望值; 所设计的预测控制器能够容易处理系统中存在的可见性约束和控制约束; 最后对所提出的视觉伺服镇定方法进行仿真验证, 结果表明所设计的控制器能有效解决移动机器人视觉伺服镇定问题.  相似文献   

5.
Two new types of control method have been developed based on model predictive control for stable-target tracking of a nonholonomic mobile robot. One method (Method 1) is a new nonlinear control method. This was developed based on model predictive control (predictive nonlinear control) to predict the next position of a mobile robot using the current velocities of the right and left wheels. This technique uses a tuning guideline in predictive nonlinear control. The other method (Method 2) is a combination of Method 1 and proportional control (predictive proportional nonlinear control). Method 2 involves a tuning guideline not only in a predictive nonlinear controller, but also in a proportional controller. In this technique, the selection of a tuning guideline in the proportional controller is enhanced, and thereby increases the control action in closed-loop responses. In Method 1, the nonlinear controller is derived from Liapunov stability theory, and is used to control the linear and angular velocities for locomotion control. Tuning parameters in the nonlinear controller (in Method 1) are selected to satisfy various design criteria, such as stability, performance, and robustness. Method 1 has certain limitations that result in a decrease of the performance criteria specified. Strong nonlinearities in the mobile robot system result in accumulated errors. To enhance performance further, we developed Method 2 as the solution for decreasing cumulative errors. Hence, the proportional controller is added to Method 1 in the closed-loop form in order to eliminate errors. The advantage of Method 2 is that it can cope with strong nonlinearities in the mobile vehicle system. The results of the performances of Method 1 and Method 2 are shown to demonstrate the effectiveness of both methods, and also the better performance of Method 2. The two new methods are effective in stable-target tracking, yielding an increase in performance and stability.  相似文献   

6.
In this paper, a model-predictive trajectory-tracking control applied to a mobile robot is presented. Linearized tracking-error dynamics is used to predict future system behavior and a control law is derived from a quadratic cost function penalizing the system tracking error and the control effort. Experimental results on a real mobile robot are presented and a comparison of the control obtained with that of a time-varying state-feedback controller is given. The proposed controller includes velocity and acceleration constraints to prevent the mobile robot from slipping and a Smith predictor is used to compensate for the vision-system dead-time. Some ideas for future work are also discussed.  相似文献   

7.
《Advanced Robotics》2013,27(8-9):1035-1054
Abstract

In this paper we present an image predictive controller for an eye-in-hand-type servoing architecture, composed of a 6-d.o.f. robot and a camera mounted on the gripper. A novel architecture for integrating reference trajectory and image prediction is proposed for use in predictive control of visual servoing systems. In the proposed method, a new predictor is developed based on the relation between the camera velocity and the time variation of the visual features given by the interaction matrix. The image-based predictor generates the future trajectories of a visual feature ensemble when past and future camera velocities are known. In addition, a reference trajectory is introduced to define the way how to reach the desired features over the prediction horizon starting from the current features. The advantages of the new architecture are the reference trajectory used for the first time in the sense of the predictive control and the predictor based on a local model. Simulations reveal the efficiency of the proposed architecture to control a 6-d.o.f. robot manipulator.  相似文献   

8.
基于广义预测的状态空间形式,提出了一种新的鲁棒预测控制设计方法—预测二次稳定控制器。利用Riccati方程给出了最优控制律,并在理论上给出了严格的证明。这种控制算法可以保证控制系统的稳定性。与广义预测控制方法进行比较,仿真结果表明该鲁棒预测控制方法是有效的,其控制性能明显优于常规的广义预测控制。  相似文献   

9.
We propose a new robust trajectory tracking control scheme for wheeled mobile robots without longitudinal velocity measurements. In the proposed controller, a velocity observer is used to estimate the longitudinal velocity of a wheeled mobile robot. A wheeled mobile robot model, including motor dynamics, is used to develop the controller. The developed controller has the following useful properties. (1) The developed controller does not require any accurate knowledge of the robot parameters or the motor parameters. Even if there are uncertainties in the robot dynamics, including the motor properties, it is certain that tracking errors ultimately become uniformly bounded in a closed-loop system using the developed controller. (2) It is shown theoretically that the ultimate norms of tracking errors can easily be reduced by setting only one design parameter.  相似文献   

10.
In this paper, an adaptive generalized predictive control (GPC) strategy based on the just-in-time learning (JITL) technique is developed. In the proposed controller design, process nonlinearities are accounted for by the set of local models obtained on-line by the JITL technique and the optimal control actions are obtained by solving the quadratic optimization problem formulated in the GPC design framework. Simulation results are presented to illustrate the advantage of the proposed GPC design and a comparison with its conventional counterparts is made.  相似文献   

11.
针对模型参数未知和存在有界干扰的非完整移动机器人的轨迹跟踪控制问题,本文提出了一种鲁棒自适应轨迹跟踪控制器方法.非完整移动机器人的控制难点在于它的运动学系统是欠驱动的.针对这一难点,本文利用横截函数的思想,引入新的辅助控制器,使得非完整移动机器人系统不再是一个欠驱动系统,缩减了控制器设计的难度,进而利用非线性自适应算法和参数映射方法构造李雅谱诺夫函数.通过李雅普诺夫方法设计控制器和参数自适应器,从而使得非完整移动机器人的跟随误差任意小,即可以任意小的误差来跟随任意给定的参考轨迹.仿真结果证明了方法的有效性.  相似文献   

12.
张金学  李媛媛 《电脑学习》2012,2(1):53-55,58
轮式机器人是一个典型的非完整性系统。由于非线性和非完整特性,很难为移动机器人系统的轨迹跟踪建立一个合适的模型。介绍了一种轮式机器人滑模轨迹跟踪控制方法。滑模控制是一个鲁棒的控制方法,能渐近的按一条所期望的轨迹稳定移动机器人。以之为基础,描述了轮式机器人的动力学模型并在二维坐标下建立了运动学方程,根据运动学方程设计滑模控制器,该控制器使得机器人的位置误差收敛到零。  相似文献   

13.
This article presents an intelligent system-on-a-programmable-chip-based (SoPC) ant colony optimization (ACO) motion controller for embedded omnidirectional mobile robots with three independent driving wheels equally spaced at 120 degrees from one another. Both ACO parameter autotuner and kinematic motion controller are integrated in one field-programmable gate array (FPGA) chip to efficiently construct an experimental mobile robot. The optimal parameters of the motion controller are obtained by minimizing the performance index using the proposed SoPC-based ACO computing method. These optimal parameters are then employed in the ACO-based embedded kinematic controller in order to obtain better performance for omnidirectional mobile robots to achieve trajectory tracking and stabilization. Experimental results are conducted to show the effectiveness and merit of the proposed intelligent ACO-based embedded controller for omnidirectional mobile robots. These results indicate that the proposed ACO-based embedded optimal controller outperforms the nonoptimal controllers and the conventional genetic algorithm (GA) optimal controllers.  相似文献   

14.
轮式移动机器人预见预测运动控制   总被引:5,自引:0,他引:5  
针对移动机器人的运动控制问题,该文采用预见预测控制方法加以解决。利用三阶Bezier曲线作为路径生成器生成目标轨迹,并据此设计了最优预见控制器作为系统的前馈补偿;使用扩展卡尔曼滤波器作为预测模型,基于广义预测控制(GPC)实现了PPC运动控制器的设计。仿真实验结果证明了该方法的有效性。  相似文献   

15.
预估控制下的实时网络遥操作移动机器人   总被引:4,自引:2,他引:2  
构建了能使操作者通过Internet远程实时控制的移动机器人系统.为了补偿网络时延和抵消其对遥操作系统的影响,基于我们以前提出的改进型Smith预估器原理,采用了预估控制策略.为了保证系统稳定性和透明性,基于主从端的传感器信息交换,设计了一个动态模型管理器,其中模型和力反馈误差调节通过模糊控制实现.除了力反馈外,为了增强遥操作的实时性,引入了预估的虚拟显示.为了精确地预测网络时延,提出了一个新颖的时钟同步算法.为了降低时延抖动,结合我们提出的两个算法,实现了数据缓冲策略.最后,通过长距离的网络遥操作实验验证了系统和控制策略的实用性和有效性.  相似文献   

16.
Wang  Dongliang  Wei  Wu  Wang  Xinmei  Gao  Yong  Li  Yanjie  Yu  Qiuda  Fan  Zhun 《Applied Intelligence》2022,52(3):2510-2529

Aiming at the formation control of multiple Mecanum-wheeled mobile robots (MWMRs) with physical constraints and model uncertainties, a novel robust control scheme that combines model predictive control (MPC) and extended state observer-based adaptive sliding mode control (ESO-ASMC) is proposed in this paper. First, a linear MPC strategy is proposed to address the motion constraints of MWMRs, which can transform the robot formation model based on leader-follower into a constrained quadratic programming (QP) problem. The QP problem can be solved iteratively online by a delay neural network (DNN) to obtain the optimal control velocity of the follower robot. Then, to address the input saturation constraints, model uncertainties and unknown disturbances in the dynamic model, an improved ESO-ASMC is proposed and compared with the robust adaptive terminal sliding mode control (RATSMC) and the conventional sliding mode control (SMC) to prove the effectiveness. The proposed scheme, considering the optimal control velocity obtained by the kinematics controller as the given desired velocity of the dynamics controller, can implement precise formation control, while solving various physical constraints of the robot, and eliminating the effects of model uncertainties and disturbances. Finally, through a comparative simulation case, the effectiveness and robustness of the proposed method are verified.

  相似文献   

17.
针对受限移动机器人视觉伺服系统,提出一种移动机器人视觉伺服镇定准最小最大模型预测控制策略. 基于移动机器人视觉伺服镇定误差模型,建立移动机器人视觉伺服线性参数时变预测模型,进而引入准最小最大策略,设计移动机器人视觉伺服镇定模型预测控制器.与传统视觉伺服预测控制器相比,所提控制器只需求解线性矩阵不等式表示的凸优化问题,降低了视觉伺服预测控制器的计算耗时,同时保证了闭环视觉伺服系统的渐近稳定性.仿真结果验证了所提出策略的有效性和在计算效率上的优越性.  相似文献   

18.
In this paper, novel adaptive sliding mode dynamic controller with integrator in the loop is proposed for nonholonomic wheeled mobile robot (WMR). The modified kinematics controller is used to generate kinematics velocities of WMR which are subsequently used as the input to adaptive dynamic controller. Actuator dynamics are also derived to generate actuator voltage of WMR through torque and velocity vectors. Stability of both kinematics and dynamic controller is presented using Lyapunov stability analysis. The proposed scheme is verified and validated using computer simulations for tracking the desired trajectory of WMR. The performance of proposed scheme is compared with standard backstepping kinematics controller and classical sliding mode control. In addition, the performance is further compared with standard backstepping kinematics controller with adaptive sliding mode controller without integrator. It is shown that the proposed scheme exhibits zero steady state error, fast error convergence and robustness in the presence of continuous disturbances and uncertainties.  相似文献   

19.
This paper develops a kinematic path‐tracking algorithm for a nonholonomic mobile robot using an iterative learning control (ILC) technique. The proposed algorithm produces a robot velocity command, which is to be executed by the proper dynamic controller of the robot. The difference between the velocity command and the actual velocity acts as state disturbances in the kinematic model of the mobile robot. Given the kinematic model with state disturbances, we present an ILC‐based path‐tracking algorithm. An iterative learning rule with both predictive and current learning terms is used to overcome uncertainties and the disturbances in the system. It shows that the system states, outputs, and control inputs are guaranteed to converge to the desired trajectories with or without state disturbances, output disturbances, or initial state errors. Simulations and experiments using an actual mobile robot verify the feasibility and validity of the proposed learning algorithm. © 2005 Wiley Periodicals, Inc.  相似文献   

20.
This paper deals with predictive control based on fuzzy models. A novel algorithm (LOLIMOT) is proposed for the construction of Takagi-Sugeno fuzzy models. The rule consequents are optimized by a local orthogonal least-squares method that selects the significant regressors. The rule premises are optimized by a tree construction algorithm which partitions the input space in hyper-rectangles. A generalized predictive controller (GPC) and a dynamic matrix controller (DMC) are designed. Both controllers require the extraction of a linear model from the Takagi-Sugeno fuzzy model. For the GPC a new technique called local dynamic linearization is proposed that exploits the special structure of the local linear models. The DMC is based on the evaluation of a step response. The effectiveness of both the identification algorithm and the predictive controllers is shown by application to temperature control of an industrial-scale cross-flow heat exchanger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号