首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
反应堆堆芯先进中子学模拟软件SCAP-N研发   总被引:2,自引:1,他引:1       下载免费PDF全文
堆芯中子学计算是反应堆设计分析的基础,为提高堆芯中子学计算的模拟分辨率与计算精度,开发了反应堆堆芯先进中子学模拟软件(SCAP-N)。该程序首先根据轴向特征对堆芯进行分层,并逐层进行二维堆芯非均匀输运计算,再采用超级均匀化方法(SPH)获得栅元等效均匀化截面,最后进行三维堆芯逐棒(pin-by-pin)输运计算,获得堆芯有效增殖因子与精细棒功率分布。为提高程序计算效率,采用分布式/共享式(MPI/OPENMP)混合并行方式对程序进行了并行化开发。利用虚拟反应堆(VERA)系列基准例题及美国先进非能动压水堆(AP1000)启动物理试验实测数据对程序进行了测试验证。结果表明,相比于商用核设计程序系统,SCAP-N程序采用的逐棒输运技术能够提高堆芯中子学的计算精度。与同类型高精度中子学程序相比,SCAP-N具有更高的计算效率,可进一步提高核电厂的经济性及运行灵活性。   相似文献   

2.
目前特征线方法(MOC)被广泛应用于反应堆精细中子输运计算。为提高基于MOC方法的时空中子动力学输运计算效率,本文开发了ALPHA程序的动力学计算模块,实现了基于GPU并行的二维精细动力学输运计算。同时,实现了基于GPU并行的CMFD加速计算,并对TWIGL基准题和MINI-CORE基准题进行验证。数值结果显示,基于GPU并行的中子动力学计算方法能保证良好的计算精度,且具有明显的加速效果。  相似文献   

3.
ALPHA是哈尔滨工程大学核动力仿真研究中心研发的基于异构系统的三维高保真堆芯中子输运计算程序。ALPHA程序基于性能优化的二维特征线装载图形处理单元(GPU)并行计算核心,基于MPI+CUDA混合编程模型实现粗细粒度的异构系统多节点并行并应用通信掩盖优化。ALPHA的共振计算模型采用原创的细群 子群二级离散策略并采用多群求解核心适配异构系统。ALPHA采用MOC EX实现三维全堆芯中子输运异构并行计算及GPU并行的粗网有限差分加速。数值结果表明,ALPHA程序在保证计算精度的前提下,具备较高的并行效率和一定的可扩展性,有望实现数值反应堆中中子学计算的轻量化与工程化应用。  相似文献   

4.
栅格非均匀计算过程中采用的全反射边界条件近似带来的中子射流效应和中子能谱干涉效应等环境效应对栅元均匀化常数具有较大影响。为在全堆芯pin-by-pin计算中处理环境效应带来的影响,本文从两个方面进行了计算分析。首先,基于棋盘式多组件问题对栅元均匀化群常数相对误差及各能群栅元不连续因子相对重要性进行了分析,可发现在等效均匀化常数中,热群不连续因子对全堆芯pin-by-pin计算精度的影响最重要;其次,基于最小二乘法建立了热群栅元不连续因子和堆芯中子学特征量之间的多项式函数关系,利用参数化技术提出了热群常数堆芯在线计算方法,其中堆芯中子学特征量包括扩散系数、移出截面、中子源项、归一化中子通量密度等。采用C5G7基准题和KAIST基准题进行了数值验证,计算结果表明,热群常数堆芯在线计算方法能有效降低全堆芯pin-by-pin计算特征值和棒功率相对误差,对处于不同燃料组件交界面附近的栅元,计算精度提升尤为显著。  相似文献   

5.
《核动力工程》2017,(1):25-28
DRAGON程序能够进行三维特征线法(MOC)计算,但需大量的计算时间与内存,虽在其中引入大量近似并应用多种加速算法,仍无法满足工程应用的需求。基于DRAGON程序中现有的二维MOC计算模块,开发二维MOC与一维节块展开法(NEM)耦合的堆芯输运计算程序DRAGON_HEU,在三维粗网有限差分(CMFD)加速算法的全局框架下通过轴向和径向泄漏项将二维全堆非均匀栅元MOC计算与轴向均匀栅元扩散计算耦合,实现三维堆芯Pin-by-Pin计算。运用C5G7-3D三维扩展基准题验证DRAGON_HEU,计算结果表明:DRAGON_HEU能够节约大量计算时间且具有很高的计算精度。  相似文献   

6.
随着堆芯中子学计算对精度要求的不断提高,基于栅元均匀化的pin-by-pin方法成为国内外研究热点。由于pin-by-pin计算巨大的空间网格量及栅元层面较强的非均匀性,目前常用的SP3/GSP3方法在平衡计算精度和计算效率方面还存在一定局限性,为此有必要寻找一种同时考虑计算精度与效率的堆芯计算方法。基于准扩散的堆芯pin-by-pin计算方法从中子输运理论出发,引入艾丁顿因子推导建立三维准扩散方程及边界条件,研究该方程泄漏项的特殊处理方法,同时基于节块展开法建立堆芯pin-by-pin数值计算方法并验证。数值结果表明,对于结构复杂、中子各向异性显著的堆芯,准扩散pin-by-pin计算精度要明显优于传统扩散计算,而两者计算效率相当。该方法是一种平衡了堆芯计算效率与精度的计算方法,为准扩散理论应用于堆芯pin-by-pin计算提供了基础。  相似文献   

7.
随着科学研究的不断深入、计算条件和对设计计算精度要求的不断提高,全堆芯Pin-by-pin计算已成为了下一代堆芯数值计算方法研究热点。超级均匀化方法作为全堆芯Pin-by-pin计算的均匀化方法主流方法之一被广泛使用。针对燃料组件采用传统超级均匀化方法,对存在中子泄漏的反射层组件采用空间泄漏相关的超级均匀化方法,产生了包含超级均匀化因子在内的等效均匀化常数。基于三维C5G7基准题,分析了此等效均匀化常数计算方式在非均匀性较强、中子泄漏较大反应堆堆芯的中子学计算精度。数值结果表明:与传统组件均匀化计算方法相比,应用了超级均匀化方法的堆芯Pin-by-pin计算的计算精度更高。  相似文献   

8.
特征线方法(MOC)在求解堆芯规模中子输运方程时面临计算时间长的问题,加速和并行算法是目前研究的热点。基于MOC在特征线和能群层面的并行特性,采用统一计算设备构架(CUDA)编程规范,实现了基于图形处理器(GPU)的并行二维MOC算法。测试了菱形差分和步特征线法分别在双精度、混合精度及单精度浮点运算下的计算精度、效率及GPU加速效果。采用性能分析工具对GPU程序性能进行了分析,识别了程序性能瓶颈。结果表明:菱形差分和步特征线法在不同浮点运算精度下均表现出良好的计算精度;相比于CPU单线程计算,GPU加速效果在双精度和单精度情况下分别达到35倍和100倍以上。  相似文献   

9.
KYCORE程序是在中国核动力研究设计院开发的二维组件计算程序KYLIN-2基础上开发的三维堆芯数值计算程序,其中中子输运部分采用径向特征线方法(MOC)与轴向离散坐标法(SN)直接角通量耦合的方法实现高精度计算,并通过粗网有限差分方法(CMFD)加速实现快速收敛。KYCORE程序因为计算流程的简化,导致可能出现不收敛,因此在计算方法和网格划分上做了改进,提高了计算的稳定性和包容性。通过与C5G7扩展基准题和蒙特卡罗程序的计算对比,数值验证了KYCORE输运部分计算的稳定性与准确性。  相似文献   

10.
特征线方法(MOC)在求解堆芯规模中子输运方程时面临计算时间长的问题,加速和并行算法是目前研究的热点。基于MOC在特征线和能群层面的并行特性,采用统一计算设备构架(CUDA)编程规范,实现了基于图形处理器(GPU)的并行二维MOC算法。测试了菱形差分和步特征线法分别在双精度、混合精度及单精度浮点运算下的计算精度、效率及GPU加速效果。采用性能分析工具对GPU程序性能进行了分析,识别了程序性能瓶颈。结果表明:菱形差分和步特征线法在不同浮点运算精度下均表现出良好的计算精度;相比于CPU单线程计算,GPU加速效果在双精度和单精度情况下分别达到35倍和100倍以上。  相似文献   

11.
目前高保真物理计算中大多采用基于特征线方法(MOC)的二维/一维(2D/1D)耦合方法作为中子输运求解器,经典的2D/1D耦合中子输运算法中,泄漏项计算的准确度直接影响最终收敛结果的计算精度。为了获取更精确的泄漏项,在二维/三维(2D/3D)耦合方法中采用3D全局离散纵标方法(SN)计算得到轴向泄漏项,给2D MOC进行计算,同时2D MOC为3D SN计算提供均匀化截面。为保证3D SN计算能够考虑到栅元内部注量分布,计算出射角通量时引入注量修正因子。在2D/3D耦合计算中,对2D MOC和3D SN计算进行迭代,直至问题得到收敛。基于2D/3D耦合方法,开发了相应的程序,通过对C5G7基准题的计算可知,2D/3D耦合方法在减少MOC计算层数的情况下可以获得很好的计算结果,初步具备小堆芯一步法输运计算的能力。  相似文献   

12.
特征线方法(MOC)可以精确求解任意几何的中子输运方程,但该方法收敛慢、计算时间长。本研究基于空间区域分解和特征线并行技术,采用MPI+OpenMP/CUDA编程模型,实现了适用于中央处理器-图形处理器(CPU-GPU)异构系统的二维MOC异构并行算法。为充分利用异构系统中的CPU和GPU计算资源,实现CPU-GPU协同计算,提出动态任务分配模型,根据CPU和GPU的计算能力合理分配计算任务。数值验证结果表明:程序具有良好的计算精度;动态任务分配模型能根据硬件性能给出最佳任务分配方案;5异构节点(包含20块GPU)并行时,相对MPI+CUDA并行模式,采用CPU-GPU协同计算后,程序整体效率提升达到14%。   相似文献   

13.
GPU加速三维特征线方法的研究   总被引:3,自引:0,他引:3  
三维特征线方法可以精确求解任意几何堆芯的稳态多群中子输运方程,但同时也具有收敛慢、计算时间长的不足,需要研究相应的加速手段.图形处理器(GPU)计算由于具有速度快,能耗低的优点,被认为是未来高性能计算发展的方向之一.研究GPU计算加速三维特征线方法,并将其应用到三维特征线程序TCM中.借助统一计算设备架构(CUDA)的GPU计算,中央处理器(CPU)负责内存分配、有效增殖系数keff和源分布计算等逻辑性强或归约计算的处理,GPU执行特征线射线扫描细网求解细网通量.计算结果表明,经改写后的程序具有良好的加速效果.  相似文献   

14.
压水堆堆芯Pin-by-pin燃料管理计算程序NECP-Bamboo2.0,利用广义等效均匀化理论实现栅元均匀化计算,采用指数函数展开节块SP3方法进行全堆芯中子输运计算,采用多物理并行计算技术实现了三维全堆芯的核-热-燃耗紧耦合高性能计算。本文利用大型压水堆BEAVRS基准题验证该程序计算的精确性。验证结果表明:NECP-Bamboo2.0具有较高的计算精度,能满足于工程需求。  相似文献   

15.
栅格非均匀计算过程中采用的全反射边界条件近似带来的中子射流效应和中子能谱干涉效应等环境效应对栅元均匀化常数具有较大影响。为在全堆芯pin by pin计算中处理环境效应带来的影响,本文从两个方面进行了计算分析。首先,基于棋盘式多组件问题对栅元均匀化群常数相对误差及各能群栅元不连续因子相对重要性进行了分析,可发现在等效均匀化常数中,热群不连续因子对全堆芯pin by pin计算精度的影响最重要;其次,基于最小二乘法建立了热群栅元不连续因子和堆芯中子学特征量之间的多项式函数关系,利用参数化技术提出了热群常数堆芯在线计算方法,其中堆芯中子学特征量包括扩散系数、移出截面、中子源项、归一化中子通量密度等。采用C5G7基准题和KAIST基准题进行了数值验证,计算结果表明,热群常数堆芯在线计算方法能有效降低全堆芯pin by pin计算特征值和棒功率相对误差,对处于不同燃料组件交界面附近的栅元,计算精度提升尤为显著。  相似文献   

16.
本文基于耦合求解的思想,轴向、径向均采用特征线法(MOC),通过开展2D/1D耦合MOC理论模型、模块化几何预处理方法研究,开发了2D/1D耦合MOC 3D中子输运求解程序MMOC,并开展了1D/2D/3D C5G7基准题验证。keff的相对误差分别为0.082%、0.045%、0.032%,该程序准确有效,计算精度满足中子输运计算的要求。  相似文献   

17.
《核动力工程》2016,(2):7-12
提出"数值燃料棒"概念,研究燃料棒多物理数值模拟技术,开发出相应的模型及程序。编制了基于有限元方法的热传导、力学计算模块和基于特征线方法(MOC方法)的中子输运计算模块,并进行验证。计算结果表明:相关计算模块的开发是有效的,可为进一步耦合求解燃料棒热传导问题、力学问题和中子输运问题,模拟燃料棒在反应堆内极端环境下的各种行为奠定基础。  相似文献   

18.
在压水堆堆芯Pin-by-pin计算中,采用超级均匀化(SPH)方法作为均匀化技术,对燃料组件传统SPH因子进行计算,生成了Pin-by-pin等效均匀化参数。针对存在中子泄漏现象的反射层组件,研究了与空间泄漏相关的SPH方法,在保证反应率守恒的基础上,同时保证各栅元各能群的中子泄漏率守恒,解决了存在中子泄漏时SPH因子迭代计算的不收敛问题,生成了反射层组件的等效均匀化参数。基于KAIST基准题,分析了压水堆堆芯Pin-by-pin计算中应用SPH因子的堆芯计算精度。数值结果表明,与传统组件均匀化计算方法相比,应用SPH方法的压水堆堆芯Pin-by-pin计算的计算精度更高。  相似文献   

19.
OpenMC是麻省理工大学计算反应堆物理组开发的开源蒙特卡罗程序,能够方便地制作适用于特定堆芯中子能谱分布的多群反应截面及高阶勒让德散射截面以用于离散坐标输运程序ANISN的计算。本文基于ENDF/B-Ⅶ.1和CENDL-3.1评价数据库,利用OpenMC计算制作了ANSIN格式的多群截面并通过基准题的计算验证计算结果的准确性。通过截面转换程序的编写,将OpenMC给出的堆芯各阶勒让德散射分量,堆芯中子能谱分布,散射、吸收反应率以及裂变中子产生速率等信息转换为ANISN程序可读取的截面库格式。采用制作的截面库利用ANINS计算有效中子增殖因子及堆芯中子通量分布。结果表明,ANISN确定论的计算结果与OpenMC给出的蒙特卡罗计算结果相吻合,验证了这种方法可有效地为ANISN提供截面数据,将来可推广应用于二维、三维确定论中子输运计算。  相似文献   

20.
二维/一维耦合输运方法较好地平衡了效率与精度,因此被广泛应用于一步法全堆芯输运计算。二维/一维耦合输运方法中,由于泄漏项在方程右端,导致二维特征线法(MOC)计算时方程右端总源项在迭代过程中可能成为负值,造成迭代发散。本文针对二维/一维耦合输运计算中的负源项问题,提出了一种改进的泄漏项分割方法。新的泄漏项分割方法可在不造成计算精度损失和仅增加有限内存的条件下,显著提高二维/一维耦合输运方法的稳定性。通过强泄漏算例、C5G7基准题、VERA-3A基准题等进行测试,表明该方法对提高二维/一维耦合输运方法稳定性具有显著的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号