首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A study was conducted to examine the isothermal oxidation behavior of a new Ni-Cr-W-Al alloy in air at 1250℃ with different time. Oxidation kinetics was determined from weight-change measurements. The microstructure and composition of the oxide scale were investigated by means of scanning electron microcopy and X-ray diffraction. The results showed that the oxide scales of the alloy were a compact and continuous outer Cr2O3 and NiCr2O4 layer and an inner Al2O3 layer that was in dendrite shape. Oxides scales with good adherence were formed on the surface of the alloy, which made the alloy perform excellent high-temperature oxidation resistance.  相似文献   

2.
TiN,Ti1-xAIxN single layer coatings and TiN/Ti1-xAIxN multilayer coatings were deposited on SKH51 tool steel substrate by arc ion plating.The coatings were annealed in air to study the effect of aluminum and film structure on the oxidation performance.The surface morphology and structure were characterized by scanning electron microscopy and X-ray diffraction.The element distribution on the cross section was analyzed by electron probe microscopy.It is found that the oxidation resistance of these Ti1-xAlxN based coatings is mainly attributed to aluminum content in them.In comparison with the Ti1-xAlxN single layer coating,the TiN layer inserting into the Ti1-xAlxN in a multilayer coating increases the tendency of Ti diffusion toward the surface and forms a Ti-enriched top surface oxide layer,thus degrades the oxidation resistance.As far as the oxidation resistance is concerned in this study,Ti0.33Al0.67N single layer coating performs the best among all coatings.The kinetic of oxidation behavior of all coatings presents two definite stages.One is a slow oxidation growth which conforms to parabolic law,and the other presents severe mass gain with oxidation duration.The annealing time for severe oxidation initiation is responsible to Fe2O3formation in the oxide scale.  相似文献   

3.
The effect of sputtered Ti-50Al-10Cr and Ti-50Al-20Cr coatings on both isothermal and cyclic oxidation resistance at 800~900°C and hot corrosion resistance at 850°C of Ti-24Al-14Nb3V was investigated. Results indicated that Ti-24Al-14Nb-3V alloys exhibited poor oxidation resistance due to the formation of Al2O3+TiO2+AlNbO4 mixed scales in air at 800~900°C and poor hot corrosion resistance due to the spallation of scales formed in Na2SO4+K2SO4 melts at 850°C. Both Ti-S0Al-10Cr and Ti-50Al-20Cr coatings remarkably improved the oxidation and hot corrosion resistance of Ti-24Al-14Nb-3V alloy.  相似文献   

4.
The isothermal and cyclic oxidation behaviors in air and hot corrosion behaviors in Na2SO4 + 25 wt% K2SO4 salt of M951 cast superalloy and a sputtered nanocrystalline coating of the same material were studied. Scanning electron microscopy, energy dispersive X-ray spectroscope, X-ray diffraction, and transmission electron microscopy were employed to examine the morphologies and phase composition of the M951 alloy and nanocrystalline coating before and after oxidation and hot corrosion. The as-sputtered nanocrystalline layer has a homogeneous y phase structure of very fine grain size (30-200 nm) with the preferential growth texture of (111) parallel to the interface. Adherent AI203 rich oxide scale formed on the cast M951 alloy and its sputtered coating after isothermal oxidation at 900 and 1000 ℃. However, when being isothermal oxidized at 1100℃ and cyclic oxidized at 1000 ℃, the oxide scale formed on the cast alloy was a mixture of NiO, NiAl2O4, Al2O3 and Nb205 and spalled seriously, while that formed on the sputtered coating mainly consisted of Al2O3 and was very adherent. Nanocrystallization promoted rapid formation of Al2O3 scale during the early stage of oxidation and enhanced the adhesion of the oxide scale, thus improved the oxidation resistance of the substrate alloy. Serious corrosion occurred for the cast alloy. The sputtered nanocrystalline coating apparently improved the hot corrosion resistance of the cast alloy in the mixed sulfate by the formation of a continuous Al2O3 and Cr2O3 mixed oxide layer on the surface of the coating, and the pre- oxidation treatment of the coating led to an even better effect.  相似文献   

5.
The oxidation behavior of Hastelloy-XR alloy was investigated to obtain the optimum surface condition for corrosion-resistant glass-coatings. The surface morphology of oxide scales changed significantly with variation of temperatureand oxygen partial pressure (po2 ). The oxidation kinetics was mainly parabolic independent of oxidation conditions.The oxide scales were consisted of inner Cr2O3 and outer spinel layers. The phase component of spinel layers wereMn1.5Cr1.5O4 and (Mn,Ni)(Cr,Fe)2O4 for the oxygen partial pressures po2<10 kPa and po2>10 kPa, respectively.The optimum oxidation condition to obtain an oxide scale for well-adhered glass-coating to the substrate was 1248 Kand po2 =0.01 kPa for the oxidation time of 43 ks.  相似文献   

6.
(Ni,Pd)Al coating, prepared by low pressure pack cementation on the Ni-base superalloy M38 where Pd-20 wt pct Ni alloy was predeposited, consists of a single β-(Ni,Pd)Al phase. The initial isothermal oxidation behavior of (Ni,Pd)Al coating was investigated by TGA, XRD, SEM/EDS at 800~1100℃. Results show that oxidation kinetics accord preferably with parabolic law at 800, 900 and 1100℃, but not at 1000℃.θ-Al2O3 was observed at 800~1100℃. It is found that Pd plays an important role in accelerating the diffusion of Ti from the substrate to the coating surface in the aluminide coating.  相似文献   

7.
The effect of a sputtered Ti-48AI-8Cr-2Ag (at. pct) coating on the oxidation resistance of the cast Ti-46.5AI-5Nb (at. pct) alloy was investigated in air at 1000-1100℃. Hot corrosion in molten 75 wt pct Na2SO4+25 wt pct K2SO4 was investigated at 900℃. The scale on the cast TiAINb tends to spall in air, while the scale on coating is very adherent. The sputtered Ti-48AI-8Cr-2Ag coating remarkably improved high temperature oxidation resistance of the cast Ti-46.5AI-5Nb alloy because of the formation of an adherent Al2O3 scale. Due to the inward diffusion of Cr, Kirkendall voids were found at the coating/substrate interface. TiAICrAg coating provided excellent hot corrosion resistance for TiAINb alloy in molten 75 wt pct Na2SO4+25 wt pct K2S04 at 900℃ due to the formation of a continuous Al2O3 scale.  相似文献   

8.
NiCoCrAlY-ZrO2·Y2O3 coatings were deposited on the substrates by using a technology of combining electron,atom and ion beams (three beams). Isothermal oxidation for these samples was performed at 1100℃ for 100-300 h. The results show that a thermally grown oxide (TGO) layer was formed between NiCoCrAlY layer and oxidation. The TGO contains α-Al2O3 and Y4Al2O9 etc. oxides. The intensity ratio of α-Al2O3/Y4Al2O9 was monotonously decreased with increasing oxidation time based on XRD (X-ray diffraction) analysis. The Y4Al2O9 phase plays the most important role in high temperature oxidation resistance at 1100℃. The related mechanism was also discussed.  相似文献   

9.
Oxidation resistance coatings of Ir-40 at.% Zr and Ir were produced onto Mo substrates by double glow plasma technology. The oxidation resistances of the coatings were evaluated at high temperature. Ir-Zr coating consisted of two layers: the primary layer close to the substrate was composed of dense columnar grains and the second layer was composed of dense grains of nanometric size. The mass gain of Ir coating above 800℃ was about 1.35% due to the formation of solid IrO2. The mass loss of Ir coating was about 5.3% due to the formation of gaseous oxide IrO3 when being held at 1227 ℃ for 30 min. The substrate was protected more effectively by multilayer than monolayer coating of Ir in oxidizing environment. The Ir-Zr coating was well bonded to the substrate after oxidation at 800℃. After oxidation at 1000℃, the Ir-Zr coating was poorly bonded to the substrate. The oxidation resistance of Ir-Zr coating was poor due to high content of Zr.  相似文献   

10.
The oxidation behaviors of graphite and ZrB2-SiC modified graphite composite were investigated at 2100℃ in1X105 Pa air and 0.2X105 Pa O2. The oxidation tests were conducted in an induction heating furnace. The oxidation of these two materials followed the linear rate law. The determined radius loss rates of graphite and C-ZrB2-Si C at 2100℃ were 2.18X10-2and 1.05X10-2%/s in 1X105 Pa air, and 3.23X10 2 and 2.21X10 2%/s in 0.2X105 Pa O2, respectively. The incorporation of ZrB2 and SiC decreased remarkably the oxidation rate of graphite because the oxide scale formed on the sample surface during oxidation helps in reducing the exposed surface area of the underneath substrate. In two different atmospheres with the same oxygen partial pressure, both graphite and ZrB2-SiC experienced more severe oxidation at 2100℃ in0.2X105 Pa O2than in 1X105 Pa air. The oxidation rate-controlling step for graphite and ZrB2-SiC was proposed to be the inward diffusion of oxygen through the boundary layer and through the pores in the oxide scale, respectively. A model based on diffusion theory was established to discuss the effect of the total gas pressure on their oxidation behaviors.  相似文献   

11.
Formation and Oxidation Behavior of Al—Cu—Fe Quasicrystal   总被引:3,自引:0,他引:3  
Al62.5Cu25Fe12.5 alloy was prepared by arc melting .It was found that the formation of quasicrystalline phase is related to the condition of annealing,such as temperature and duration.Weight gain of Al-Cu-Fe quasicrystal during the oxidation at 700 and 800℃ in dry air was measured by means of thermal balance.The oxidation kinetics showed that the quasicrystal has good oxidation resistance.Only α-Al2O3 was formed on Al62.5Cu25Fe12.5 quasicrystal.The surface morphologies of Al-Cu-Fe quasicrystal after isothermal oxidation for different times were observed.  相似文献   

12.
The performances of gradient thermal barrier coatings (GTBCs)produced by EB-PVD were evaluated by isothermal oxidation and cyclic hot corrosion(HTHC) tests.Compared with conventional two-layered TBCs, the GTBCs exhibite better resistance to not only oxidation but also hot-corrosion.Adense Al2O3 layer in the GTBCs effectively prohibites inward diffusion of Oand S and outward diffusion of Al and Cr during the tests.On the other hand ,an “inlaid“ interface ,resulting from oxidation of the Al along the columnar grains of the bond coat,enhances the adherence of Al2O3 layer.Failure of the GTBC finally occurred by cracking at the interface between the bond coat and Al2O3 layer, due to the combined effect of sulfidation of the bond coat and thermal cycling.  相似文献   

13.
The performances of gradient thermal barrier coatings (GTBCs) produced by EB-PVD were evaluated by isothermal oxidation and cyclic hot corrosion (HTHC) tests. Compared with conventional two-layered TBCs, the GTBCs exhibite better resistance to not only oxidation but also hot-corrosion. A dense Al2O3 layer in the GTBCs effectively prohibites inward diffusion of O and S and outward diffusion of Al and Cr during the tests. On the other hand, an "inlaid" interface, resulting from oxidation of the Al along the columnar grains of the bond coat, enhances the adherence of AI2O3 layer. Failure of the GTBC finally occurred by cracking at the interface between the bond coat and AI2O3 layer, due to the combined effect of sulfidation of the bond coat and thermal cvcling.  相似文献   

14.
Pt layers of 5 μm in thickness were electroplated before or after depositing NiCoCrAlY coating by arc ion plating(AIP) aiming for identifying the effect of Pt enriching position on microstructure and cyclic oxidation behavior of Pt modified NiCoCrAlY coatings. Al-rich zones formed at the same position of Ptrich zones for both modified coatings due to uphill diffusion of Al driven by Pt. Cyclic oxidation tests at 1000 and 1100?C indicated that oxidation resistance of NiCoCrAlY was improved by Pt modification via different mechanisms: at surface, Pt-rich zone promoted selective oxidation of Al to form α-Al_2O_3,whilst at coating/substrate interface Pt-rich zone acted as effective diffusion barrier for titanium. Roles of Pt played in enhancing the oxidation performance of various Pt-modified NiCoCrAlY coating were investigated.  相似文献   

15.
Cast Mg-6 wt pct Al alloy solution-treated at 683 K for 16 h and aged at 498 K was coated by plasma electrolytic oxidation (PEO) method.The Mg-6 wt pct Al alloy aged for 16 h exhibited the highest microhardness and wear resistance.After PEO coating,however,the microhardness and wear resistance of coatings on Mg- 6 wt pct Al alloy showed a tendency to decrease with increasing aging time,which was in aggrement with the change of thickness with aging time.In addition,the coatings on solution-treated Mg-6 wt pct Al alloy had better microhardness and wear resistance than those on aged Mg-6 wt pct Al alloys.Consequently,it can be understood that the aging treatment has a deleterious influence on the mechanical properties of coatings on Mg-6 wt pct Al alloy.  相似文献   

16.
This paper details an investigation of the effects of oxide stringers on the β-phase depletion behaviour in thermally sprayed CoNiCrAlY coatings. Vacuum Plasma Sprayed(VPS) Co NiCrAlY coatings, which are free of oxide stringers, are used as the reference materials in comparison with High-Velocity Oxy-Fuel(HVOF)sprayed CoNiCrAlY coatings during isothermal oxidation at 1100℃. An outer layer of spinel oxides and an inner layer of alumina are formed in the as-sprayed coatings, while only a single alumina scale is found in the heat-treated coatings. Less β-phase depletion occurred in the HVOF coatings than in the VPS coatings. It was found that the β phases tend to coalesce at the oxide stringers in the HVOF coatings,which is likely due to the internal oxide particles and stringers acting as short diffusion barriers to tie up the β phase and inhibit the β-phase depletion.  相似文献   

17.
A kind of new deflection technique has been developed for measuring the growth stress of thermally growing oxide scales during high temperature oxidation of alloys. The average growth stresses in oxide scales such as Al2O3, NiO and Cr2O3 formed on the surface of the superalloys can be investigated by this technique. Unlike the comventional deflection method, the novel method does not need to apply a coating for preventing one main face of thin strip specimen from oxidizing and can be used under the condition of longer time and higher temperature.  相似文献   

18.
Diffusion Bonding of Ti_3Al Base Alloy   总被引:3,自引:0,他引:3  
: The effects of diffusion bonding temperature and holding time on the joint strength of Ti3Al base alloy has been investigated in this paper. The shear strength of Ti-14Al-21Nb-3Mo-V alloy diffusion bonding joint under pressure of 12 MPa at 990℃ for 70 min was obtained to 797.6 MPa which approaches the base material strength. In addition, a short-time diffosion bonding process was studied in order to decrease the bonding cost. With the deformation of the specimens of 2.5% and the bonding temperature of 990℃ for 15 min, the bonding strength could reach 801 MPa.  相似文献   

19.
Vacuum brazing of TiAl alloy to 40Cr steel sheets was conducted with newly developed CuTiNiZrV amorphous foils. It was found that a diffusion layer,filler metal and reaction layer existed in the brazed seam. The diffusion layer in the joint brazed with Cu43.75Ti37.5Ni6.25Zr6.25V6.25(at.%) foil was flat and thin,containing Ti19Al6 and Ti2Cu intermetallic compounds; however,the diffusion layer brazed with Cu37.5Ti25Ni12.5Zr12.5V12.5 foil was uneven with bulges,consisting of essentially Ti-based solute solution. The foil with 12.5 at.% V showed inferior spreadability compared to that with 6.25 at.% V at brazing temperature. However,fracture happened along the diffusion layer with 6.25 at.% V foil due to the formation of brittle intermetallic phases,but the joints brazed with 12.5 at.% V foil failed through the TiAl substrate. These results show that designing amorphous alloy with less Ti and more V for brazing TiAl alloy to steel is appropriate.  相似文献   

20.
Kinetics and Mechanism of Interfacial Reaction in a SiCf/Ti Composite   总被引:2,自引:0,他引:2  
In order to evaluate the interracial reaction, a SiCf/Ti (TA1) composite was fabricated by a vacuum hot pressingmethod and then heat-treated in vacuum at 800℃ for up to 100 h. The elemental distributions of C, Si and Ti at the interracial reaction zone were investigated. It was found that the reaction zone occurs during the fabrication process and continuously grows at high temperature because the Si and C atoms diffuse from SiC fibers to the matrix and Ti atoms diffuse in the opposite direction. The growth of the reaction zone is diffusion controlled and the mechanism of the reaction can be described by a reactive diffusion model of solid-state growth of an AmBn layer between two elementary substances A and B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号