首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A multi-residue method was developed that allows for the simultaneous determination of psychoactive compounds such as opioids, tranquilizers, antiepileptics (primidone, carbamazepine plus two metabolites),the cocaine metabolite benzoylecgonine, the antidepressant doxepin, as well as the calcium channel blocker verapamil in raw and treated wastewater, surface water, groundwater, and drinking water. After solid-phase extraction with Oasis HLB at neutral pH, the analytes were detected by LC electrospray tandem MS in the positive ion mode. With a few exceptions relative recoveries of the analytes exceeded 70%. The limits of quantification were in the low ng/L range. Matrix effects were compensated by using appropriate deuterated or 13C-15N-labeled surrogate standards. For raw and treated wastewater, concentration factors were lowered to reduce matrix effects. Most analytes (15 of 20) were found in raw and treated wastewater as well as in surface water, and hence, are presumably ubiquitously present in the environment. Antiepileptics, the opium alkaloids morphine and codeine, dihydrocodeine, the two tranquilizers oxazepam and temazepam, the opioid tramadol, doxepin, and verapamil were detected in STP discharges and German rivers at concentrations up to the microg/L range. In drinking water, only carbamazepine, its metabolite 10,11-dihydroxy-10,11-dihydrocarbamazepine, and primidone were present at concentrations up to 0.020 microg/L.  相似文献   

2.
Environmental fate of pharmaceuticals in water/sediment systems   总被引:3,自引:0,他引:3  
In recent years there has been growing interest on the occurrence and the fate of pharmaceuticals in the aquatic environment. Nevertheless, few data are available covering the fate of the pharmaceuticals in the water/sediment compartment. In this study, the environmental fate of 10 selected pharmaceuticals and pharmaceutical metabolites was investigated in water/sediment systems including both the analysis of water and sediment. The experiments covered the application of four 14C-labeled pharmaceuticals (diazepam, ibuprofen, iopromide, and paracetamol) for which radio-TLC analysis was used as well as six nonlabeled compounds (carbamazepine, clofibric acid, 10,11-dihydro-10,11-dihydroxycarbamazepine, 2-hydroxyibuprofen, ivermectin, and oxazepam), which were analyzed via LC-tandem MS. Ibuprofen, 2-hydroxyibuprofen, and paracetamol displayed a low persistence with DT50 values in the water/sediment system < or =20 d. The sediment played a key role in the elimination of paracetamol due to the rapid and extensive formation of bound residues. A moderate persistence was found for ivermectin and oxazepam with DT50 values of 15 and 54 d, respectively. Lopromide, for which no corresponding DT50 values could be calculated, also exhibited a moderate persistence and was transformed into at least four transformation products. For diazepam, carbamazepine, 10,11-dihydro-10,11-dihydroxycarbamazepine, and clofibric acid, system DT90 values of >365 d were found, which exhibit their high persistence in the water/sediment system. An elevated level of sorption onto the sediment was observed for ivermectin, diazepam, oxazepam, and carbamazepine. Respective Koc values calculated from the experimental data ranged from 1172 L x kg(-1) for ivermectin down to 83 L x kg(-1) for carbamazepine.  相似文献   

3.
Strong sorption to soot- and charcoal-like material (collectively termed black carbon or BC) in soils and sediments is possibly the reason for recent observations of elevated geosorbent-water distribution ratios, slow desorption, limited uptake, and restricted bioremediation. We evaluated the role of environmental BC in the sorption of phenanthrene (PHE) to a polluted lake sediment from a Rhine River sedimentation area. Sorption isotherms were determined over a wide concentration range (0.0005-6 microg/ L) for the original sediment (with organic matter or OM, native sorbates, and BC), sediment from which we had stripped > 90% of the native sorbates (only OM and BC), and sediment combusted at 375 degrees C (only BC). The sorption isotherms of the original and stripped sediments were almost linear (Freundlich coefficient or n(F) > 0.9), whereas the isotherm of the BC remaining after the sediment combustion was highly nonlinear (n(F) = 0.54). At low concentrations (ng/L range), PHE sorption to BC in the combusted sediment was found to exceed the total PHE sorption in the original and stripped sediments. This implies that it may not be possible to use a BC-water sorption coefficient measured in combusted sediment to estimate total sorption to the original sediment. This "intrinsic" BC-water sorption coefficient after combustion was calculated to be 9 times larger than the "environmental" one in the untreated sediment. Competition between the added PHE and the native PAHs and/or OM may explain this difference. It appears that, at low aqueous PHE concentrations (ng/L and below), BC is the most important geosorbent constituent with respect to sorption. At higher concentrations (microg/L), BC sorption sites become saturated and BC sorption is overwhelmed by sorption to the other OM constituents. Because sorption is a central process affecting contaminant behavior and ecotoxicity, understanding this process can strongly contribute to risk assessment and fate modeling.  相似文献   

4.
Evidence is accumulating that sorption of organic chemicals to soils and sediments can be described by "dual-mode sorption": absorption in amorphous organic matter (AOM) and adsorption to carbonaceous materials such as black carbon (BC), coal, and kerogen, collectively termed "carbonaceous geosorbents" (CG). Median BC contents as a fraction of total organic carbon are 9% for sediments (number of sediments, n approximately 300) and 4% for soils (n = 90). Adsorption of organic compounds to CG is nonlinear and generally exceeds absorption in AOM by a factor of 10-100. Sorption to CG is particularly extensive for organic compounds that can attain a more planar molecular configuration. The CG adsorption domain probably consists of surface sites and nanopores. In this review it is shown that nonlinear sorption to CG can completely dominate total sorption at low aqueous concentrations (<10(-6) of maximum solid solubility). Therefore, the presence of CG can explain (i) sorption to soils and sediments being up to 2 orders of magnitude higher than expected on the basis of sorption to AOM only (i.e., "AOM equilibrium partitioning"), (ii) low and variable biota to sediment accumulation factors, and (iii) limited potential for microbial degradation. On the basis of these consequences of sorption to CG, it is advocated that the use of generic organic carbon-water distribution coefficients in the risk assessment of organic compounds is not warranted and that bioremediation endpoints could be evaluated on the basis of freely dissolved concentrations instead of total concentrations in sediment/soil.  相似文献   

5.
Sorption coefficients of hydrophobic organic chemicals (HOC) to sediments and soils can easily be underestimated in traditional batch experiments, especially because analysis of the aqueous concentration often includes compounds sorbed to colloidal organic matter. In this work, a "sediment dilution approach" has been combined with measurements of freely dissolved concentrations to determine sorption coefficients of five chlorobenzenes and two chloroanilines in spiked sediment and of two unknown chemicals in field-contaminated sediment. A range of sediment suspensions with different sediment-water ratios was made. Freely dissolved concentrations in these suspensions were measured by negligible depletion solid-phase microextraction (nd-SPME). Sediment-water sorption coefficients (KD) were derived from the decrease of the freely dissolved concentrations as a function of the "dilution factor" (DF = volume water/mass sediment). The determined sorption coefficients were very similar to literature values. The experimental setup provides sorption coefficients without the need for total extractions, and the negligible depletion SPME technique does not require phase separation. The proposed method might be an alternative for batch equilibrium experiments to determine sorption coefficients.  相似文献   

6.
Sorption and displacement of pyrene in soils and sediments   总被引:2,自引:0,他引:2  
Sorption isotherms of pyrene on soils and sediments were examined to understand its sorption behavior. All systems examined exhibited nonlinear sorption. Sorption nonlinearity was found to be a function of the polarity index of soil/sediment organic matter (SOM), suggesting that the degree of condensation of SOM, characterized by its polarity index, was correlated with the sorption behavior of pyrene. The polarity index of SOM could be a new factor for explaining the sorption nonlinearity. The sorption affinity of two soils and two sediments for pyrene increased with decreasing SOM polarity. A higher sorption affinity in the two soils was associated with a higher degree of condensation of SOM compared to that of the two sediments. A displacement test was performed after pyrene sorption using phenanthrene as a displacer. Pyrene was displaced in all systems examined, and nonlinearity became less pronounced after displacement. Such an increase in isotherm linearity implied that sorption site energies became more homogeneous after displacement. Furthermore, the site energy distribution IE*) derived from the Freundlich model parameters showed that energy reduction of high-energy sites was more significant than that of low-energy sites after displacement. In addition, a decrease in sorption capacity after displacement could be ascribed to the partial depletion of sorption sites by the displacer. The displacement data indicated that the cocontaminant can have potential effects on the fate and bioavailability of anthropogenic organic pollutants sorbed in soils and sediments, thus affecting their exposure risks.  相似文献   

7.
The sorption of microcystins (MCs) to fifteen lake sediments and four clay minerals was studied as a function of sediment/clay properties, temperature, and pH through well-controlled batch sorption experiments. All sorption data for both sediments and clays are well described by a nonlinear Freundlich model (n(f) varies between 0.49 and 1.03). The sorption process for MCs exhibited different adsorptive mechanisms in different lake sediments mainly dependent on the sediment organic matter (OM). For sediments with lower OM (i.e., less than 8%), the sorption of MCs decreases with increasing OM and is dominated by the competition for adsorption sites between MCs and OM. In contrast, MC sorption to organic-rich (i.e., more than 8%) sediments increases with increasing OM and is dominated by the interaction between MCs and adsorbed OM. The sorption thermodynamics of MCs onto sediments showed that MC sorption is a spontaneous physisorption process with two different mechanisms. One mechanism is an exothermic process for sediment with lower OM, and the other is an endothermic process for sediment with higher OM. Furthermore, the sorption of MCs onto sediments is pH dependent (sorption decreased with increasing pH). These results provide valuable informations for a better understanding of the natural abiotic attenuation mechanisms for MCs in aquatic ecosystems.  相似文献   

8.
The first paper of this series reported that soil/sediment organic matter (SOM) can be fractionated into four fractions with a combined wet chemical procedure and that kerogen and black carbon (BC) are major SOM components in soil/sediment samples collected from the industrialized suburban areas of Guangzhou, China. The goal of this study was to determine the sorptive properties forthe four SOM fractions for organic contaminants. Sorption isotherms were measured with a batch technique using phenanthrene and naphthalene as the sorbates and four original and four Soxhlet-extracted soil/sediment samples, 15 isolated SOM fractions, and a char as the sorbents. The results showed that the sorption isotherms measured for all the sorbents were variously nonlinear. The isolated humic acid (HA) exhibited significantly nonlinear sorption, but its contribution to the overall isotherm nonlinearity and sorption capacity of the original soil was insignificant because of its low content in the tested soils and sediments. The particulate kerogen and black carbon (KB) fractions exhibited more nonlinear sorption with much higher organic carbon-normalized capacities for both sorbates. They dominate the observed overall sorption by the tested soils and sediments and are expected to be the most important soil components affecting bioavailability and ultimate fate of hydrophobic organic contaminants (HOCs). The fact that the isolated KB fractions exhibited much higher sorption capacities than when they were associated with soil/sediment matrixes suggested that a large fraction of the particulate kerogen and BC was not accessible to sorbing HOCs. Encapsulation within soil aggregates and surface coverage by inorganic and organic coatings may have caused large variations in the accessibility of fine kerogen and BC particles to HOCs and hence lowered the sorption capacity of the soil. This variability posts an ultimate challenge for precisely predicting HOC sorption by soils from the contents of different types of SOM.  相似文献   

9.
Sorption of phthalate esters and PCBs in a marine ecosystem   总被引:4,自引:0,他引:4  
Dialkyl phthalate esters (DPEs) are widely used industrial chemicals with octanol-seawater partition coefficients ranging between 10(1.80) for dimethyl phthalate to 10(10.0) for diiso-decyl phthalate, indicating a propensity to sorb strongly to particulate matter in aquatic environments. Sorption plays a key role in controlling the long-term fate of DPEs in aquatic systems and exposure to organisms in aquatic food-webs. However, field observations of the sorption of many commercial DPEs do not exist. To characterize the sorptive nature of DPEs in a real-world aquatic ecosystem, we measured concentrations of DPEs congeners, commercial DPE mixtures, and 10 polychlorinated biphenyls (PCBs) in water, suspended sediments, and bottom sediments of a marine inlet. Sorption coefficients of spiked and native DPEs and PCBs between suspended sediments and water indicate that the apparent sorptive nature of DPEs and PCBs is substantially greater than expected from K(ow)-based sorption models. Particulate and dissolved organic matter showed similar (i.e., not statistically different) sorption affinities for native analytes. The apparent fraction of the total aqueous concentration of DPEs that is freely dissolved and absorbable via the respiratory tract of aquatic organisms varied from virtually 100% for DMP to 0.0003% for C10. The observed decline in concentration of most DPEs between suspended and bottom sediments, compared to an increase in the concentration of high Kow PCBs, suggests that the rate of desorption and degradation of DPEs exceeds that of organic carbon mineralization and contributes to the previously observed lack of biomagnification of DPEs in the aquatic food-web of this system.  相似文献   

10.
Modeling tetracycline antibiotic sorption to clays   总被引:5,自引:0,他引:5  
Sorption interactions of three high-use tetracycline antibiotics (oxytetracycline, chlortetracycline, tetracycline) with montmorillonite and kaolinite clays were investigated undervaried pH and ionic strength conditions. Sorption edges were best described with a model that included cation exchange plus surface complexation of zwitterion forms of these compounds. Zwitterion sorption was accompanied by proton uptake, was more favorable on acidic clay, and was relatively insensitive to ionic strength effects. Calcium salts promoted oxytetracycline sorption at alkaline pHs likely by a surface-bridging mechanism. Substituent effects among the compounds in the tetracycline class had only minor effects on sorption edges and isotherms under the same solution pH and ionic strength conditions. At low ionic strength, greater sorption to montmorillonite than kaolinite was observed at all pHs tested, even after normalizing for cation exchange capacity. These results indicate that soil and sediment sorption models for tetracyclines, and other pharmaceuticals with similar chemistry, must account for solution speciation and the presence of other competitor ions in soil or sediment pore waters.  相似文献   

11.
The sorption of an anionic surfactant (sodium dodecyl sulfate; SDS) and a cationic surfactant (hexadecyl trimethylammonium bromide; HDTMA) to estuarine sediment has been studied in river water and seawater. Sorption isotherms for SDS were essentially linear in both waters, suggesting a nonspecific, hydrophobic interaction between the SDS tail and particle surface. Sorption of HDTMA was considerably greater, more nonlinear, and more sensitive to water composition. These observations were attributed to a combination of both electrostatic and hydrophobic interactions between the surfactant and particle surface, the formation of admicelles, and salinity-induced structural alteration of the hydrophobic tail of the HDTMA molecule. Presence of SDS caused a reduction in the sorption of phenanthrene to estuarine sediment because of the competitive effects of the surfactant tail for hydrophobic sorption sites on the particle surface. Conversely, the presence of HDTMA caused significant enhancement in phenanthrene sequestration because of head-on sorption of surfactant molecules and a resulting, more hydrophobic particle surface. The most persistent feature of our results was an inverse dependence of unit sorption on particle concentration, and an empirical algorithm defining the effect was used to calculate the sediment-water fractionation of realistic concentrations of reactants in the estuarine water column. The results of these calculations, and the more general findings of this study, significantly improve our understanding of both the transport and fate of ionic surfactants in the estuarine environment, and the effects that these surfactants have on the partitioning of hydrophobic organic micropollutants.  相似文献   

12.
Surface sediment cores from Oriole Lake (CA) were analyzed for organic carbon (OC), black carbon (BC), and their δ(13)C isotope ratios. Sediments displayed high OC (20-25%) and increasing BC concentrations from ~0.40% (in 1800 C.E.) to ~0.60% dry weight (in 2000 C.E.). Petrographic analysis confirmed the presence of fire-derived carbonaceous particles/BC at ~2% of total OC. Natural fires were the most likely cause of both elevated polycyclic aromatic hydrocarbon (PAH) concentrations and enhanced sorption in Oriole Lake sediments prior to 1850, consistent with their tree-ring-based fire history. In contrast to other PAHs, retene and perylene displayed decreasing concentrations during periods with natural fires, questioning their use as fire tracers. The occurrence of natural fires, however, did not result in elevated concentrations of black carbon or chars in the sediments. Only the 1912-2007 sediment layer contained anthropogenic particles, such as soot BC. In this layer, combining OC absorption with adsorption to soot BC (using a Freundlich coefficient n = 0.7) explained the observed sorption well. In the older layers, n needed to be 0.3 and 0.5 to explain the enhanced sorption to the sediments, indicating the importance of natural chars/inertinites in sorbing PAHs. For phenanthrene, values of n differed significantly between sorption to natural chars (0.1-0.4) and sorption to anthropogenic black carbon (>0.5), suggesting it could serve as an in situ probe of sorbents.  相似文献   

13.
Nonhydrolyzable organic carbon (NHC) and sorption isotherms of phenanthrene (Phen) on six size-fractionated NHC fractions in two sediments from the Pearl River and Estuary, South China, were investigated. It was found that NHC including ancient organic carbon, black carbon, resistant aquatic organic carbon, and aged soil organic carbon consists mainly of aliphatic and aromatic carbon using 13C nuclear magnetic resonance spectroscopy. The sorption isotherms of Phen by the size-fractionated NHC fractions are nonlinear and are well-fitted to the Freundlich model. For the estuary sediment, the NHC contents and the organic carbon-normalized distribution coefficients (Koc) in the size fractions increase with decreasing particle size. The clay NHC fraction contributes to 70% of the Phen sorption by the bulk NHC isolate. However, for the contaminated river sediment, the NHC contents and the Koc values exhibit no regular variations among the size fractions. The Phen sorption capacities on the size-fractionated NHC fractions of the two sediments are significantly related to their H/C ratios and aliphatic carbon, but negatively to aromatic carbon. The fine-particle NHC fractions with high aliphatic carbon and H/C ratio play a very important role in the sorption, transport, and fate of Phen by the investigated sediments.  相似文献   

14.
The aim of this paper was to estimate the contribution to total phenanthrene sorption from unburned coal and black carbon (BC; soot and charcoal) in sediment. We determined sorption isotherms for five Argonne Premium Coal standards over a wide concentration interval (0.01-10 000 ng/L). The coals showed strong and nonlinear sorption (carbon-normalized K(F) = 5.41-5.96; nF = 0.68-0.82). Coal sorption appeared to become more nonlinear with increasing coal maturity. The coal's specific surface area appeared to influence K(F). On the basis of the current coal sorption observations combined with earlier petrographic analyses and BC sorption experiments, we calculated for one particular sediment that coal, BC, and "other" OC were all important to PHE sorption in the environmentally relevant nanogram per liter range. This indicates that it is important to consider strong sorption to coal in the risk assessment of coal-impacted geosorbents (e.g., river beds) where coal is mined/shipped and manufactured gas plant sites.  相似文献   

15.
The worldwide used herbicide dichlobenil (2,6-dichlorobenzonitrile) has resulted in widespread presence of its metabolite 2,6-dichlorobenzamide (BAM) in pore- and groundwater. To evaluate the transport of these compounds we studied the sorption of dichlobenil and BAM in 22 sediment samples of clayey till, sand, and limestone including sediments exhibiting varying oxidation states. Dichlobenil sorbed to all investigated sediments, with a high sorption in topsoils (Kd = 7.4-17.4 L kg(-1)) and clayey till sediments (Kd = 2.7-126 L kg(-1)). The sorption of the polar metabolite BAM was much lower than the sorption of dichlobenil but followed the same tendency with the highest sorption in the topsoils (Kd = 0.24-0.66 L kg(-1)) and in the clayey till sediments (Kd = 0.10-0.93 L kg(-1)). The sorption of both compounds was significantly higher (2-47 times) in the unoxidized (reduced) clayey till than in the weathered (oxidized) clayey till. Such a difference in sorption capacity could neither be explained by a higher organic carbon content, sorption to clay minerals, differences in clay mineralogy, nor by blocking of reactive surface sites on clay minerals by iron oxides. However, by removing an average of 81% of the organic carbon from the reduced clayey till with H2O2, the sorption decreased on average 50%. Therefore, most of the sorption capacity in the reduced clayey till was related to organic carbon, which indicates that sorption processes are affected by changes in organic compound composition due to weathering.  相似文献   

16.
Concern over the potential negative ecological effects of steroid hormones from human- and animal-derived wastes has resulted in an increased interest regarding the mobility and persistence of these compounds in the environment. Batch experiments were conducted to examine the simultaneous sorption and dissipation of three reproductive hormones (testosterone, 17beta-estradiol, and 17alpha-ethynyl estradiol) in four midwestern U.S. soils and one freshwater sediment. Sorption isotherms were generated by measuring aqueous concentrations and by extracting the sorbed parent chemical or transformation products (e.g., estrone, androstenedione). Apparent sorption equilibrium is reached within a few hours. Measured sorption isotherms for the three parent chemicals and their principal transformation products were generally linear. Average organic carbon normalized sorption coefficients (K(oc)) resulted in standard deviations of less than 0.2 log units and were consistent with reported aqueous solubilites and octanol-water partition coefficients, indicating hydrophobic partitioning as the dominant sorption mechanism. Large log K(oc) values (approximately 3-4) suggest that leaching from soils will be limited, runoff of soil- and land-applied biosolids are the most likely inputs into surface waters, and that a significant fraction of these compounds will be associated with sediments. Half-lives for hormone dissipation in the aerobic soil and sediment slurries estimated assuming pseudo first-order processes ranged from a few hours to a few days with testosterone having the shortest half-life.  相似文献   

17.
Remediation of contaminated sediments remains a technological challenge because traditional approaches do not always achieve risk reduction goals for human health and ecosystem protection and can even be destructive for natural resources. Recent work has shown that uptake of persistent organic pollutants such as polychlorinated biphenyls (PCBs) in the food web is strongly influenced by the nature of contaminant binding, especially to black carbon surfaces in sediments. We demonstrate for the first time in a contaminated river that application of activated carbon to sediments in the field reduces biouptake of PCBs in benthic organisms. After treatment with activated carbon applied at a dose similar to the native organic carbon of sediment, bioaccumulation in freshwater oligochaete worms was reduced compared to preamendment conditions by 69 to 99%, and concentrations of PCBs in water at equilibrium with the sediment were reduced by greater than 93% at all treatment sites for up to three years of monitoring. By comparing measured reductions in bioaccumulation of tetra- and penta-chlorinated PCB congeners resulting from field application of activated carbon to a laboratory study where PCBs were preloaded onto activated carbon, it is evident that equilibrium sorption had not been achieved in the field. Although other remedies may be appropriate for some highly contaminated sites, we show through this pilot study that PCB exposure from moderately contaminated river sediments may be managed effectively through activated carbon amendment in sediments.  相似文献   

18.
Sediments contaminated with organotin compounds (OTs), in particular triorganotins (TOTs), are abundant in areas with high shipping activities. To assess the possible remobilization of these highly toxic compounds from such sediments, a profound understanding of their sorption/desorption behavior is necessary. In this work the extent and reversibility of sorption of OTs to sediments has been investigated using contaminated freshwater harbor sediments and two certified OT containing marine sediments. Experiments conducted with perdeuterated OTs showed that sorption of OTs to sediments is a fast and reversible process involving primarily particulate organic matter (POM) constituents as sorbents. The organic carbon-normalized sediment-water distribution ratios (DOC, expressed in L/kgOC) determined in the laboratory were consistent with in-situ DOCs obtained from OT concentrations measured in sediment and pore water samples from two dated sediment cores. For both butyl- and phenyltin compounds the log DOC values were in the range of 4.7-6.1, and the following sequence was observed: DOC (tri-OT) > or = DOC (di-OT) > or = DOC (mono-OT). However, the differences were much less pronounced than would have been expected for hydrophobic partitioning of the corresponding compounds into POM. These results support our hypothesis from earlier work with dissolved humic acids that OT sorption to sediments occurs primarily by reversible formation of (innerspere) complexes between the tin atom and carboxylate and phenolate ligands present in POM. Because of the high DOC values (i.e. log DOC > or = 4) the diffusion of OTs from deeper sediments to the surface will be rather slow, and thus a major release from undisturbed sediments is not expected. However, because OTs readily desorb, any resuspension of contaminated sediments (e.g., by the tide, storms or dredging activities) will lead to enhanced OT concentrations in the overlaying water column. Furthermore, in contrastto polycyclic aromatic hydrocarbons (PAH) where large fractions may be tightly bound (in)to soot or other carbonaceous materials, OTs will be more readily bioavailable due to the fast and reversible sorption/desorption behavior.  相似文献   

19.
The solid-water distribution ratios (Kd values) of "native" PAHs, PCBs, and PCDDs in Boston and New York Harbor sediments were determined using small passive polyethylene samplers incubated for extended times in sediment-water suspensions. Observed solid-water distribution coefficients exceeded the corresponding f(oc)Koc products by 1-2 orders of magnitude. It was hypothesized that black carbon (fBC), measured in the Boston harbor sediment at about 0.6% and in the New York harbor sediment at about 0.3%, was responsible for the additional sorption. The overall partitioning was then attributed to absorption into the organic carbon and to adsorption onto the black carbon via Kd = f(oc)Koc + f(BC)K(BC)C(w)n-1 with Cw in microg/L. Predictions based on published Koc, K(BC), and n values for phenanthrene and pyrene showed good agreement with observed Kd,obs values. Thus, assuming this dual sorption model applied to the other native PAHs, PCBs, and PCDDs, black carbon-normalized adsorption coefficients, K(BC)S, were deduced forthese contaminants. Log K(BC) values correlated with sorbate hydrophobicity for PAHs in Boston harbor (log K(BC) approximately 0.83 log gamma w(sat) - 1.6; R2 = 0.99, N= 8). The inferred sorption to the sedimentary BC phase dominated the solid-water partitioning of these compound classes, and its inclusion in these sediments is necessary to make accurate estimates of the mobility and bioavailability of PAHs, PCBs, and PCDDs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号