首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
This article reviews the recent progress in the growth and device applications of InAs/InP quantum dots (QDs) for telecom applications. Wavelength tuning of the metalorganic vapor-phase epitaxy grown single layer and stacked InAs QDs embedded in InGaAsP/InP (1 0 0) over the 1.55-μm region at room temperature (RT) is achieved using ultra-thin GaAs interlayers underneath the QDs. The GaAs interlayers, together with reduced growth temperature and V/III ratio, and extended growth interruption suppress As/P exchange to reduce the QD height in a controlled way. Device quality of the QDs is demonstrated by temperature-dependent photoluminescence (PL) measurements, revealing zero-dimensional carrier confinement and defect-free InAs QDs, and is highlighted by continuous-wave ground-state lasing at RT of narrow ridge-waveguide QD lasers, exhibiting a broad gain spectrum. Unpolarized PL from the cleaved side, important for realization of polarization insensitive semiconductor optical amplifiers, is obtained from closely stacked QDs due to vertical electronic coupling.  相似文献   

2.
The linewidth of laterally loss-coupled distributed feedback (DFB) lasers based on InAs quantum dots (QDs) embedded in an InGaAs quantum well (QW) is investigated. Narrow linewidth operation of QD devices is demonstrated. A linewidth-power product less than 1.2 MHz /spl middot/ mW is achieved in a device of 300-/spl mu/m cavity length for an output power up to 2 mW. Depending on the gain offset of the DFB modes from the QD ground state gain peak, linewidth rebroadening or a floor is observed at a cavity photon density of about 1.2-2.4/spl times/10/sup 15/ cm/sup -3/, which is much lower than in QW lasers. This phenomenon is attributed to the enhanced gain compression observed in QDs.  相似文献   

3.
The first butt joint integrated extended cavity InAs/InP (100) quantum dot (QD) Fabry-Perot laser emitting around 1.55 mum is demonstrated. Continuous wave lasing at room temperature on the QD ground state transition is achieved. The threshold current is comparable to that of all-active QD lasers. The Butt joint reflectivity for straight waveguides is below -40 dB.  相似文献   

4.
A theoretical and experimental study of a particular transverse-electric (TE) mode lasing mechanism of a tunneling injection InP quantum-dot (QD) laser is reported. In the experiment, the TE mode lasing action takes place at the first excited state of InP biaxially compressively strained QDs. This QD state is coupled to the ground state of two tensile-strained InGaP quantum wells (QWs) although the tensile-strained QW structure favors the transverse-magnetic (TM) polarization light emission. The measured TE and TM modal gain spectra show a typical QW gain evolution behavior at low injection currents, which can be theoretically modeled by the quasi-equilibrium of carrier distribution. When the injection current is increased near threshold, a TE gain narrowing and a simultaneous TM gain pinning are observed in the measured modal gain spectra, which cannot be explained via the quasi-equilibrium model. We propose a polarization-dependent photon-mediated carrier redistribution in the QD-coupled-QW structure to explain this TE and TM gain evolution behavior. When the injection current is just below threshold, the strong carrier depletion via stimulated emission due to coupling between the InP QD and InGaP QW states plays an important role in carrier redistribution, which depends on the optical transition energy and polarization. This concept of the polarization-dependent photon-mediated carrier redistribution explains the TE gain narrowing and TM gain pinning behavior. In addition, a coupled rate equation model is established, and the calculated polarization power ratio based on the coupled rate equations explains the experimental observation.  相似文献   

5.
An experimental comparative study of the gain, index variation, and linewidth enhancement factor in 980-nm quantum-well (QW) and quantum-dot (QD) lasers structures, designed for high power applications, is presented. The gain spectra of the QW lasers at high injection level revealed three different transition energies, with a low linewidth enhancement factor (/spl sim/1.2) for E2HH2 transitions. Similar values for the linewidth enhancement factor, ranging between 2.5 and 4.5, were found for QW and QD devices, when comparing at similar values of the peak gain. This result is attributed to the contribution of excited state transitions in the measured QD lasers.  相似文献   

6.
Self‐assembled InAs quantum dots (QDs) embedded in an InAlGaAs matrix were grown on an InP (001) using a solid‐source molecular beam epitaxy and investigated using transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. TEM images indicated that the QD formation was strongly dependent on the growth behaviors of group III elements during the deposition of InAlGaAs barriers. We achieved a lasing operation of around 1.5 µm at room temperature from uncoated QD lasers based on the InAlGaAs‐InAlAs material system on the InP (001). The lasing wavelengths of the ridge‐waveguide QD lasers were also dependent upon the cavity lengths due mainly to the gain required for the lasing operation.  相似文献   

7.
The advances in lasers, electronic and photonic integrated circuits (EPIC), optical interconnects as well as the modulation techniques allow the present day society to embrace the convenience of broadband, high speed internet and mobile network connectivity. However, the steep increase in energy demand and bandwidth requirement calls for further innovation in ultra-compact EPIC technologies. In the optical domain, advancement in the laser technologies beyond the current quantum well (Qwell) based laser technologies are already taking place and presenting very promising results. Homogeneously grown quantum dot (Qdot) lasers and optical amplifiers, can serve in the future energy saving information and communication technologies (ICT) as the work-horse for transmitting and amplifying information through optical fiber. The encouraging results in the zero-dimensional (0D) structures emitting at 980 nm, in the form of vertical cavity surface emitting laser (VCSEL), are already operational at low threshold current density and capable of 40 Gbps error-free transmission at 108 fJ/bit. Subsequent achievements for lasers and amplifiers operating in the O-, C-, L-, U-bands, and beyond will eventually lay the foundation for green ICT. On the hand, the inhomogeneously grown quasi 0D quantum dash (Qdash) lasers are brilliant solutions for potential broadband connectivity in server farms or access network. A single broadband Qdash laser operating in the stimulated emission mode can replace tens of discrete narrow-band lasers in dense wavelength division multiplexing (DWDM) transmission thereby further saving energy, cost and footprint. We herein reviewed the1 progress of both Qdots and Qdash devices, based on the InAs/InGaAlAs/InP and InAs/InGaAsP/InP material systems, from the angles of growth and device performance. In particular, we discussed the progress in lasers, semiconductor optical amplifiers (SOA), mode locked lasers, and superluminescent diodes, which are the building blocks of EPIC and ICT. Alternatively, these optical sources are potential candidates for other multi-disciplinary field applications.  相似文献   

8.
Numerical analyses of polarization-dependent optical gain saturations are given for quantum-well (QW) lasers in the presence of strain in the well regions in order to investigate the strain dependence of polarization-bistable operations. Gain saturation coefficients are obtained from nonlinear susceptibilities calculated in the perturbative analyses of density matrices. Band dispersions and dipole matrix elements, which are put into the density matrices, are calculated by diagonalizing Luttinger's Hamiltonian, including valence band mixing. The strain induces a change in band dispersions and wavefunctions, leading to strain-dependent saturation coefficients. The self-saturation coefficients and the cross-saturation coefficients (with orthogonal optical polarizations) pertinent to InGaAsP/InP QW vertical-cavity surface-emitting lasers are calculated. We find that the relative magnitudes of self- and cross-saturation coefficients are strongly dependent on the strain; in the presence of compressive strain, the cross-saturation coefficients are larger than the self-saturation in the wide range of the linear gain spectra, especially in the vicinity of the gain peak, indicating that the compressively strained structure is more favorable for the polarization-bistable operations.  相似文献   

9.
We report here our experimental observations on the temperature dependence of threshold current, carrier lifetime at threshold, external differential quantum efficiency, and gain of both the 1.3 μm InGaAsP-InP and GaAs-AlGaAs double heterostructure (DH) lasers. We find that the gain decreases much faster with increasing temperature for a 1.3 μm InGaAsP DH laser than for a GaAs DH laser. Measurements of the spontaneous emission observed through the substrate shows that the emission is sublinear with injection current at high temperatures for the 1.3 μm InGaAsP DH laser. Such sublinearity is not observed for GaAs DH lasers in the entire temperature range 115-350 K. The experimental results are discussed with reference to the various mechanisms that have been proposed to explain the observed temperature dependence of threshold of InGaAsP DH lasers. We find that inclusion of a calculated nonradiative Auger recombination rate can explain the observed temperature dependence of threshold current, carder lifetime at threshold, gain, and also the sublinearity of the spontaneous emission with injection current of the 1.3 μm InGaAsP-InP DH laser. Measurement of the nonradiative component of the carrier lifetime (τA) as a function of injected carrier density (n) shows thattau_{A}^{-1} sim n^{2.1}which is characteristic of an Auger process.  相似文献   

10.
We present a combined theoretical and experimental analysis of InAs/InGaAsP/InP quantum dash lasers. Calculations using an 8 band k.p Hamiltonian show that electron states, due to the low effective mass and small conduction band offsets, are not confined in the dash in the case of dash-in-a-well structures and are only weakly confined in dash-in-a-barrier structures. The shape of the dashes leads to an experimentally observed enhancement of spontaneous emission (SE) and therefore of gain for light polarized along the dash long axis, with the measured SE enhancement in excellent agreement with the theoretical calculations. An analysis of the variation of the integrated spontaneous emission rate with total current and with temperature reveals that, despite the reduced dimensionality of the active region, the threshold current of these lasers, and its temperature dependence, remain dominated by Auger recombination.   相似文献   

11.
The effect of intraband carrier relaxation on the threshold characteristics of InGaAsP quantum well (QW) lasers is studied. The dependence of the intraband hole-hole relaxation time τ int on temperature and carrier density is analyzed. It is shown that taking into account the finiteness of τ int and its dependence on temperature and carrier density strongly affects the gain and the threshold current density of QW lasers.  相似文献   

12.
The technological limits for ultra high speed devices are now rapidly expanding due to the use of quantum well (QW) materials. This new class of materials gives the opportunity of tailoring materials parameters by controlling geometries on an atomic scale. They look very promising as materials for lasers, detectors and transistors suitable even above 10 Gb/s. It will be demonstrated that state of the art MQW structures can be realized in both material systems, InGaAsP/InP and InGaAlAs/InP. Parallel lateral laser structures (e.g. SIBH, BRS and TBH) have been designed to take full benefit of QW technology. Ultimate reduction of parasitics, whilst using potential low cost fabrication technologies is the basis for achieving high bitrate (10 Gb/s) MQW lasers, even with the stronger damping in QW material. Using the DFB-SIBH laser structure 10 Gb/s large signal experiments are successfully performed with bulk, MQW and SLMQW lasers. Extremely low fall times of 44 ps are achieved. Additional MQW based improvements are observed such as: −3 times higher differential gain, increased output power (>110 mW), 2.5 times lower chirp (Δλ−20dB = 0.40 nm at 10 Gb/s modulation), and 2 dB gain in power budget at 10 Gb/s digital transmission.  相似文献   

13.
基于研制的1.5mm腔长InAs/InP共面条状量子点激光器,搭建了其镜面外腔结构,并对其光谱特性进行了测试,获得了镜面外腔周期性调制光谱,并在周期性的产生、多模激射和模式随电流的变化等方面对其光谱特性进行了分析研究。相比以前为获得单模使用的超短腔长超短外腔量子阱激光器,长腔长InAs/InP量子点激光器表现出较小的模式压缩比,更容易发生多模激射。  相似文献   

14.
We have measured the gain and the carrier lifetime at threshold in shallow proton stripe AlGaAs multiquantum well lasers with several different active layer structures. The lasers studied had active layers with two wells, four wells, six wells, and the modified multiquantum well. The net gainGis found to vary almost linearly with the injection currentIfor all the laser structures studied. The slopedG/dIis largest for the modified multiquantum well (MMQW) laser which is consistent with the observed lowest threshold current of these devices. We find that the carrier density at threshold for the MMQW laser is about a factor of 4 lower than that for a single quantum well laser. Thus, the effect of a nonradiative mechanism (e.g., Auger effect) which varies superlinearly with the injected carrier density is considerably reduced in MMQW lasers compared to that in single quantum well (SQW) lasers or the conventional double heterostructure lasers. The reduced threshold carrier density of the MMQW lasers has important implications for high temperature performance of lasers fabricated from the InGaAsP/InP material systems which are believed to have nonradiative mechanisms that vary superlinearly with carrier density, particularly for those laser structures for which the high temperature operation is not limited by leakage current.  相似文献   

15.
Self-organized InAs quantum-dot (QD) lasers emitting at 1.5 /spl mu/m were grown by gas source molecular beam epitaxy on (100) InP substrates. Room temperature continuous-wave (CW) operation of QD-based buried ridge stripe lasers is reported. We investigated experimentally the relevant CW performances of as-cleaved InP-based QD lasers for telecom applications such as temperature properties (T/sub 0/=56 K), infinite length threshold current density (J/sub /spl infin///spl sim/150 A/cm/sup 2/ per QDs layer) and internal efficiency (0.37 W/A). Lasing in pulsed mode is observed for cavity length as short as 200 /spl mu/m with a threshold current of about 37 mA, demonstrating the high gain of the QD's active core. In addition, the Henry parameter of these InP-based QD lasers is experimentally determined using the Hakki-Paoli method (/spl alpha//sub H//spl sim/2.2).  相似文献   

16.
本文根据一维势阱和应变效应以及能带填充效应的简单理论,提供了一种既简单又较准确的计算压缩变量子阱激光器峰值增益波长方法。  相似文献   

17.
The 1.55-μm quantum-dot (QD) micropillar cavities are strongly required as single photon sources (SPSs) for silica-fiber-based quantum information processing. Theoretical analysis shows that the adiabatic distributed Bragg reflector (DBR) structure may greatly improve the quality of a micropillar cavity. An InGaAsP/InP micropillar cavity is originally difficult, but it becomes more likely usable with inserted tapered (thickness decreased towards the center) distributed DBRs. Simulation turns out that, incorporating adiabatically tapered DBRs, a Si/SiO2-InP hybrid micropillar cavity, which enables weakly coupling InAs/InP quantum dots (QDs), can even well satisfy strong coupling at a smaller diameter. Certainly, not only the tapered structure, other adiabatic designs, e.g., both DBR layers getting thicker and one thicker one thinner, also improve the quality, reduce the diameter, and degrade the fabrication difficulty of Si/SiO2-InP hybrid micropillar cavities. Furthermore, the problem of the thin epitaxial semiconductor layer can also be greatly resolved by inserting adiabatic InGaAsP/InP DBRs. With tapered DBRs, the InGaAsP/InP-air-aperture micro-pillar cavity serves as an efficient, coherent, and monolithically producible 1.55-μm single-photon source (SPS). The adiabatic design is thus an effective way to obtain prospective candidates for 1.55-μm QD SPSs.  相似文献   

18.
We report on interplay of epitaxial growth phenomena and device performance in quantum dot (QD) and quantum wire (QWW) lasers based on self-organized nanostructures. InAs QDs are the most explored model system for basic understanding of "near-ideal" QD devices. Vertically-coupled growth of QDs and activated phase separation allow ultimate QD wavefunction engineering enabling GaAs lasers beyond 1400 nm and polarization-insensitive optical amplification. A feasibility of QD semiconductor optical amplifiers at terabit frequencies using InAs QDs is manifested at 1300 and 1500 nm. 1250-1300 nm QD GaAs edge emitters and VCSELs operate beyond 10 Gb/s with ultimate temperature robustness. Furthermore, temperature-insensitive operation without current or modulation voltage adjustment at >20 Gb/s is demonstrated up to ~90 degC. Light-emitting devices based on InGaN-QDs cover ultraviolet (UV) and visible blue-green spectral ranges. In these applications, InN-rich nanodomains prevent diffusion of nonequilibrium carries towards crystal defects and result in advanced degradation robustness of the devices. All the features characteristic to QDs are unambiguously confirmed for InGaN structures. For the red spectral range InGaAlP lasers are used. Growth on misoriented surfaces, characteristic to these devices, leads to nano-periodi- cally-step-bunched epitaxial surfaces resulting in two principal effects: 1) step-bunch-assisted alloy phase separation, leading to a spontaneous formation of ordered natural super lattices; 2) formation of quantum wire-like structures in the active region of the device. A high degree of polarization is revealed in the luminescence recorded from the top surface of the structures, in agreement with the QWW nature of the gain medium. QD and QWW lasers are remaining at the frontier of the modern optoelectronics penetrating into the mainstream applications in key industries.  相似文献   

19.
20.
陈松岩  刘宝林 《半导体光电》1998,19(2):107-110,115
根据对InGaAsP-InP分别限制量子阱激光器结构的注入效率的分析和利用X射线衍射结InGaAsP-InP20个周期的多量子阱结构异质界面的研究,设计,制备了4个阱的InGaAsP-InP分别限制量子阱激光器结构,利用质子轰击制得条形激光器,阈值电流为100mA,直流室温连续工作,单面输出外微分子效率为36%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号