首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
As part of the Earth Observer 1 (EO-1) Mission, the Advanced Land Imager (ALI) demonstrates a potential technological direction for Landsat Data Continuity Missions. To evaluate ALI's capabilities in this role, a cross-calibration methodology has been developed using image pairs from the Landsat-7 (L7) Enhanced Thematic Mapper Plus (ETM+) and EO-1 (ALI) to verify the radiometric calibration of ALI with respect to the well-calibrated L7 ETM+ sensor. Results have been obtained using two different approaches. The first approach involves calibration of nearly simultaneous surface observations based on image statistics from areas observed simultaneously by the two sensors. The second approach uses vicarious calibration techniques to compare the predicted top-of-atmosphere radiance derived from ground reference data collected during the overpass to the measured radiance obtained from the sensor. The results indicate that the relative sensor chip assemblies gains agree with the ETM+ visible and near-infrared bands to within 2% and the shortwave infrared bands to within 4%.  相似文献   

2.
The Landsat-7 Enhanced Thematic Mapper Plus (ETM+) has been and continues to be radiometrically characterized using the Image Assessment System (IAS), a component of the Landsat-7 Ground System. Key radiometric properties analyzed include: overall, coherent, and impulse noise; bias stability; relative gain stability; and other artifacts. The overall instrument noise is characterized across the dynamic range of the instrument during solar diffuser deployments. Less than 1% per year increases are observed in signal-independent (dark) noise levels, while signal-dependent noise is stable with time. Several coherent noise sources exist in ETM+ data with scene-averaged magnitudes of up to 0.4 DN, and a noise component at 20 kHz whose magnitude varies across the scan and peaks at the image edges. Bit-flip noise does not exist on the ETM+. However, impulse noise due to charged particle hits on the detector array has been discovered. The instrument bias is measured every scan line using a shutter. Most bands show less than 0.1 DN variations in bias across the instrument lifetime. The panchromatic band is the exception, where the variation approaches 2 DN and is related primarily to temperature. The relative gains of the detectors, i.e., each detector's gain relative to the band average gain, have been stable to /spl plusmn/0.1% over the mission life. Two exceptions to this stability include band 2 detector 2, which dropped about 1% in gain about 3.5 years after launch and stabilized, and band 7 detector 5, which has changed several tenths of a percent several times since launch. Memory effect and scan-correlated shift, a hysteresis and a random change in bias between multiple states, respectively, both of which have been observed in previous Thematic Mapper sensors, have not been convincingly found in ETM+ data. Two artifacts, detector ringing and "oversaturation", affect a small amount of ETM+ data.  相似文献   

3.
The reflectance-based method of vicarious calibration has been used for the absolute radiometric calibration of the Landsat series of sensors since the launch of Landsat-4. The reflectance-based method relies on ground-based measurements of the surface reflectance and atmospheric conditions at a selected test site nearly coincident with the imaging of that site by the sensor of interest. The results of this approach are presented here for Landsat-5 Thematic Mapper (TM) and Landsat-7 Enhanced Thematic Mapper Plus (ETM+). The data have been collected by two groups, one from the University of Arizona and the other from South Dakota State University. The test sites used by the University of Arizona group for this work are the Railroad Valley Playa, Lunar Lake Playa, and Roach Lake Playa all of which are in Nevada, Ivanpah Playa in California, and White Sands Missile Range, New Mexico. The test site for the South Dakota State group is a grass site in Brookings, SD. The gains derived from dates using these sites spanning the period from 1984 to 2003 are presented for TM and for the period of 1999 to 2003 for ETM+. Differences between the two groups are less than the combined uncertainties of the methods, and the data are thus treated as a single dataset. The results of these vicarious data indicate that there has been no degradation apparent in TM since 1995 and in ETM+ since launch. Agreement between the reflectance-based results and the preflight calibration of ETM+ is better than 4% in all bands, and the standard deviation of the average difference indicates a precision of the reflectance-based method on the order of 3%.  相似文献   

4.
Four aspects of the radiometry of the Landsat-5 Thematic Mapper were characterized over the 20+ year mission lifetime for the six reflective bands: relative gain (the radiometric gain of each detector within a band relative to other detectors in that band), bias, performance of the Internal Calibrator (IC) system, and noise. Relative gain was found to be stable or slowly varying and could be described as a linear function of time for most detectors; the maximum change was approximately 0.5%/year. These relative gain characterizations provide an alternate source of destriping information that, in general, compares favorably with that obtained from currently used scene-specific methods. Much of the variability in instrument bias levels was found to be related to temperature effects; long-term changes in bias levels were less than 0.5 DN overall. The lamp-based IC system, though stable over the short term, showed both individual lamp phenomena and changes in overall behavior that complicated the ability to monitor the system's stability. Using the best behaved lamp and some assumptions about expected lamp behavior, characterization of response with a simple model was achieved through the year 2000. The model shows an initial 5% to 10% decay in response over the first three years of operation, depending on the band. Noise levels and signal-to-noise ratio in the instrument appear to be stable throughout the lifetime.  相似文献   

5.
Landsat-5 TM reflective-band absolute radiometric calibration   总被引:3,自引:0,他引:3  
The Landsat-5 Thematic Mapper (TM) sensor provides the longest running continuous dataset of moderate spatial resolution remote sensing imagery, dating back to its launch in March 1984. Historically, the radiometric calibration procedure for this imagery used the instrument's response to the Internal Calibrator (IC) on a scene-by-scene basis to determine the gain and offset of each detector. Due to observed degradations in the IC, a new procedure was implemented for U.S.-processed data in May 2003. This new calibration procedure is based on a lifetime radiometric calibration model for the instrument's reflective bands (1-5 and 7) and is derived, in part, from the IC response without the related degradation effects and is tied to the cross calibration with the Landsat-7 Enhanced Thematic Mapper Plus. Reflective-band absolute radiometric accuracy of the instrument tends to be on the order of 7% to 10%, based on a variety of calibration methods.  相似文献   

6.
The NASA's Earth Observing System Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) has continued to operate with satisfactory performance since its launch in May 2002, exceeding its nominal six-year design lifetime. Its continuous Earth observations have been used to generate many science data products for studies of the Earth's system. MODIS has 36 spectral bands: 20 reflective solar bands and 16 thermal emissive bands (TEBs). All TEB observations are made at 1-km nadir spatial resolution with spectral wavelengths from 3.7 to 14.4 $mu hbox{m}$. Primary applications of MODIS TEB include surface, cloud, and atmospheric temperatures, water vapor, and cloud top altitude. MODIS TEB on-orbit calibration uses a quadratic algorithm with its calibration coefficients derived using an onboard blackbody (BB). This paper will present Aqua MODIS TEB on-orbit calibration, characterization, and performance over its six-year mission. Examples of instrument thermal behavior, BB temperature stability, detector short-term stability, and changes in long-term response (or system gain) will be presented. Comparisons will also be made with Terra MODIS, launched in December 1999. On-orbit results show that Aqua MODIS and its focal plane temperatures have behaved normally. BB temperature has remained extremely stable with typical scan-to-scan variations of less than $pm$0.15 mK. Most TEB detectors continue to exceed their specified signal-to-noise ratio requirements, exhibiting excellent short-term stability and calibration accuracy. Excluding a few noisy detectors, either identified prelaunch or occurring postlaunch, on-orbit changes in TEB responses have been less than 0.5% on an annual basis. By comparison, the overall Aqua TEB performance has been better than that of Terra MODIS.   相似文献   

7.
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument was launched into Earth orbit on the Terra platform in late 1999. ASTER produces images of the Earth in 14 spectral bands including five bands in the thermal infrared (TIR) part of the electromagnetic spectrum (8-12 /spl mu/m). On one occasion ASTER was used to image the Moon as part of the long-term calibration strategy for instruments on the Terra platform. Analysis of the imagery revealed that the TIR band had noticeable straylight effects (ghosting), and an algorithm was developed to correct for these effects. The algorithm was applied to ASTER/TIR images acquired over a vicarious calibration (VC) site at Cold Springs Reservoir (CSR), NV. Data from CSR had been evaluated in three previous VC experiments and showed large unexplained differences between the ASTER image radiance and vicarious predicted radiance not observed in other larger, more laterally homogenous sites. After straylight correction the vicarious and image radiances were in good agreement. A further comparison with nearly simultaneous airborne TIR data acquired with the MODIS/ASTER (MASTER) sensor indicated that the ASTER straylight corrected data also agreed with the airborne data. Finally, the algorithm was applied to artificially created models. The results indicated that a radiance change caused by straylight reached 6% to 8% of a radiance contrast for a smaller square target than 10/spl times/10 pixels or a narrower line target than five pixels. Straylight in ASTER/TIR imagery may not be very large for most targets, but may become an error factor for high-radiance-contrast targets.  相似文献   

8.
The Multi-angle Imaging SpectroRadiometer (MISR) instrument consists of nine cameras, four spectral bands each, and an on-board calibrator (OBC). Experiments using the latter allow camera radiometric coefficients to be updated bimonthly. Data products are thus calibrated to a stable radiometric scale, even in the presence of instrument response changes. The camera, band, and pixel-relative calibrations are accurately determined using the OBC. Conversely, as the OBC itself is subject to response degradation, MISR also conducts annual field vicarious calibration campaigns. The first of these, conducted in June 2000 at a desert site in Nevada, has been used to establish the present absolute radiometric scale. Validation of this radiometric scale, using AirMISR, shows consistency to within 4%. Following these studies, however, it was determined that MISR radiometry is subject to scene-dependent effects due to ghosting that, for the Nevada test sites, reduces the apparent radiance by 3%. Correction for this effect is required in order to avoid radiometric errors over sites that do not exhibit the same background contrast. Additional studies are in progress, with plans to correct for scene-contrast effects in future Level 1B1 processing.  相似文献   

9.
Describes the preflight and inflight calibration approaches used for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). The system is a multispectral, high-spatial resolution sensor on the Earth Observing System's EOS-AM1 platform. Preflight calibration of ASTER uses well-characterized sources to provide calibration and preflight round-robin exercises to understand biases between the calibration sources of ASTER and other EOS sensors. These round-robins rely on well-characterized, ultra-stable radiometers. An experiment field in Yokohama, Japan, showed that the output from the source used for the visible and near-infrared (VNIR) subsystem of ASTER may be underestimated by 1.5%, but this is still within the 4% specification for the absolute, radiometric calibration of these bands. Inflight calibration will rely on vicarious techniques and onboard blackbodies and lamps. Vicarious techniques include ground-reference methods using desert and water sites. A recent joint field campaign gives confidence that these methods currently provide absolute calibration to better than 5%, and indications are that uncertainties less than the required 4% should be achievable at launch. The EOS-AM1 platform will also provide a spacecraft maneuver that will allow ASTER to see the Moon, allowing further characterization of the sensor. A method for combining the results of these independent calibration results is presented. The paper also describes the plans for validating the Level 2 data products from ASTER. These plans rely heavily upon field campaigns using methods similar to those used for the ground-reference, vicarious calibration methods  相似文献   

10.
Vicarious calibration of ASTER thermal infrared bands   总被引:1,自引:0,他引:1  
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on the Terra satellite has five bands in the thermal infrared (TIR) spectral region between 8-12 /spl mu/m. The TIR bands have been regularly validated in-flight using ground validation targets. Validation results are presented from 79 experiments conducted under clear sky conditions. Validation involved predicting the at-sensor radiance for each band using a radiative transfer model, driven by surface and atmospheric measurements from each experiment, and then comparing the predicted radiance with the ASTER measured radiance. The results indicate the average difference between the predicted and the ASTER measured radiances was no more than 0.5% or 0.4 K in any TIR band, demonstrating that the TIR bands have exceeded the preflight design accuracy of <1 K for an at-sensor brightness temperature range of 270-340 K. The predicted and the ASTER measured radiances were then used to assess how well the onboard calibration accounted for any changes in both the instrument gain and offset over time. The results indicate that the gain and offset were correctly determined using the onboard blackbody, and indicate a responsivity decline over the first 1400 days of the Terra mission.  相似文献   

11.
搭载于风云三号B星(FY-3B)的中分辨率光谱成像仪(MERSI)安装了由积分球和监视探测器组成的太阳反射通道星上定标器。本文分析了2010年11月 13日至2013年4月11日期间的星上定标数据,评估了FY-3B星上定标器和MERSI的响应衰变情况。结果表明,星上定标器的输出和MERSI的响应均存在衰变,且衰变程度与波长有关。星上定标器除通道1(470nm)年衰变率超过7.0%外,其余通道年衰变率小于5.0%。MERSI 470-565nm等短波通道衰变较大,年衰变率超过10.0%;长波通道衰变较小,年衰变率小于4.0%。  相似文献   

12.
The Multi-angle Imaging SpectroRadiometer (MISR) consists of nine cameras pointing from nadir to an extreme of 70.5/spl deg/ in the view angle. It is a pushbroom imager with four spectral bands per camera. Instrument specifications call for each camera to be calibrated to an absolute uncertainty of 3% and to within 1% relative to the other cameras. To accomplish this, the MISR instrument utilizes an on-board calibrator (OBC) to provide updates to the instrument gain coefficients on a bimonthly basis (i.e. once every two months). Spectralon diffuse panels are used in the OBC to provide a uniform target for the nine MISR cameras to view. The radiometric scale of the OBC is established through the use of photodiodes. The stability of the MISR OBC system and its in-flight calibration are discussed.  相似文献   

13.
Absolute radiometric calibration is one of the main elements that contribute to the quality of measurements obtained with optical remote sensing instruments, but maintaining a good calibration accuracy during the whole life of an instrument is a difficult task. Since the sensitivity of an instrument generally changes after launch and degrades with time, many sensors have been equipped with onboard calibration devices. But these devices being not perfectly reliable, independent calibration methods based on natural targets are necessary to validate the results. The Sun glint calibration method is an interband calibration method that uses the specular reflection of the Sun on the ocean surface to transfer the absolute calibration of one reference spectral band to other spectral bands, from visible to short wave infrared wavelengths. Despite the drawback of relying on the absolute calibration of a reference spectral band, this method is one of the rare methods that can provide accurate calibration results for near-infrared spectral bands up to 1650 nm, without requiring costly in situ measurements simultaneously to the satellite overpass. This paper details the Sun glint calibration method and its error budget, and gives the results obtained with the VEGETATION instrument that was recently launched onboard the Systeme Pour l'Observation de la Terre 5 (SPOT-5) satellite. These results compare very well with the results of other calibration methods.  相似文献   

14.
In the presented work, digital background calibration of a charge pump based pipelined ADC is presented. A 10-bit 100 MS/s pipelined ADC is designed using TSMC 0.18 µm CMOS technology operating on a 1.8 V power supply voltage. A power efficient opamp-less charge pump based technique is chosen to achieve the desired stage voltage gain of 2 and digital background calibration is used to calibrate the inter-stage gain error. After calibration, the ADC achieves an SNDR of 66.78 dB and SFDR of 79.3 dB. Also, DNL improves to +0.6/–0.4 LSB and INL improves from +9.3/–9.6 LSB to within ±0.5 LSB, consuming 16.53 mW of power.  相似文献   

15.
A technique for the radiometric correction of Landsat-4 Thematic Mapper (TM) data was proposed by the Canada Centre for Remote Sensing (CCRS) in 1982, and two reports defining the method and discussing preliminary results were presented by CCRS at the Landsat-4 Scientific Characterization Early Results Symposium [1] and [2]. Subsequent detailed observations of raw image data, raw radiometric calibration data, and background measurements extracted from the raw data stream on High Density Tape have highlighted in the proposed method, major shortcomings, which if left uncorrected, can cause severe radiometric striping in the output product. Observations presented here show that there are random fluctuations in the background level for spectral band 1 of magnitudes ranging from 2 to 3.5 digital numbers (DN), depending on detector number. Similar variability is observed in all the other reflective bands, but with smaller magnitude in the range 0.5 to 2.5 DN. More significantly, it is shown how measurements of the dc background level can be correlated with variations in both image data background and calibration samples. The effect on both raw data and on data corrected using the earlier proposed technique is explained, and the correction required for these factors as a function of individual scan line number for each detector is described. It is shown how the revised technique, which includes corrections for a line-dependent offset in addition to the scene-dependent gain and offset, can be incorporated into an operational environment.  相似文献   

16.
A periodic 3% to 5% variation in detector response affecting both image and internal calibrator (IC) data has been observed in bands 5 and 7 of the Landsat-5 Thematic Mapper. The source for this variation is thought to be an interference effect due to buildup of an ice-like contaminant film on a ZnSe window, covered with an antireflective coating (ARC), of the cooled Dewar containing these detectors. Periodic warming of the dewar is required in order to remove the contaminant and restore detector response to an uncontaminated level. These effects in the IC data have been characterized over four individual outgassing cycles using thin-film models to estimate transmittance of the window/ARC and ARC/contaminant film stack throughout the instrument lifetime. Based on the results obtained from this modeling, a lookup table procedure has been implemented that provides correction factors to improve the calibration accuracy of bands 5 and 7 by approximately 5%.  相似文献   

17.
We have developed a global vicarious calibration scheme for spaceborne ocean-color sensors, simulating top-of-atmosphere radiance globally using a radiative transfer model, SeaWiFS Level 3 eight-day mean products, and an in-water optical model. This is a relative calibration against two channels used to detect aerosol properties; however, it enables us to determine the spatial and temporal characteristics of the vicarious calibration coefficients (Kvc) without in situ observations. We applied this scheme to the NASDA Global Imager (GLI), which operated from January 25, 2003 to October 24, 2003. Kvc exhibited the following properties: (1) channel characteristics of 1.0-1.1 (GLI was lower than the simulation) in channels 1-9 (380-565 nm), nearly 1.0 in channels 10-19 (625-865 nm), and 0.91-0.98 in channels 24-29 (1050-2210 nm); (2) scan-angle dependency and its temporal changes in channels 1-3; and (3) scan-mirror side differences and temporal changes. Applying Kvc to GLI ocean-color processing produced outputs consistent with the ground observation data. This scheme is also useful for generating consistent products from different ocean-color sensors in orbit.  相似文献   

18.
Radiometric performance of the Advanced Spectrometer for Thermal Emission and Reflection Radiometer (ASTER) is characterized by using acquired imagery data. Noise-equivalent reflectance and temperature, sensitivity (gain), bias (offset), and modulation transfer function (MTF) are determined for the visible and near-infrared (VNIR), the shortwave infrared (SWIR), and the thermal infrared (TIR) radiometers that constitute ASTER. The responsivity evaluated from onboard calibration (OBC) and from instrumented scenes show similar trends for the VNIR: the OBC data yield 2.7% to 5.5% a year for the VNIR. The SWIR response changed less than 2% in the 3.5 years following launch. The zero-radiance offsets of most VNIR and SWIR bands have increased about 1/2 digital number per year. The in-orbit noise levels, calculated by the standard deviation of dark (VNIR and SWIR) or ocean (TIR) scenes, show that all bands are within specification. The MTF at Nyquist and 1/2 Nyquist frequencies was determined for all bands using the Moon (VNIR and SWIR) or terrestrial scenes with lines of sharp thermal contrast. In-orbit performance along-track and cross-track is better than prelaunch for the VNIR and SWIR bands in nearly all cases; the TIR effectively meets specification in-orbit.  相似文献   

19.
The Modular Optoelectronic Scanner (MOS) was launched in the spring of 1996 on the Indian IRS-P3 satellite. With the successful launch of NASA's Sea-viewing Wide Field of-view Sensor (SeaWiFS) in the summer of 1997, there are now two ocean color missions in concurrent operation, and there is interest to compare data from these two sensors. In this paper, we describe our efforts to retrieve ocean-optical properties from both SeaWiFS and MOS using consistent methods. We first briefly review the atmospheric correction, which removes more than 90% of the observed radiances in the visible, and then we describe how the atmospheric-correction algorithm used for the SeaWiFS data can be modified for application to other ocean color sensors. Next, since the retrieved water-leaving radiances in the visible between MOS and SeaWiFS are significantly different, we developed a vicarious intercalibration method to recalibrate the MOS spectral bands based on the optical properties of the ocean and atmosphere derived from the coincident SeaWiFS measurements. Furthermore, because of the strange calibration behavior of the MOS 750 nm band, we modified the atmospheric correction such that the MOS 685 and 868 nm bands can also be used. We present and discuss the MOS-retrieved, ocean-optical properties before and after the vicarious calibration using both the MOS 685 and 750 nm coupled with 868 nm bands in comparison with results from SeaWiFS and demonstrate the efficacy of this approach. We show that it is possible and efficient to vicariously intercalibrate sensors between one and another  相似文献   

20.
The TOPEX/Poseidon microwave radiometer (TMR) is a three-frequency radiometer flown on the TOPEX/Poseidon (T/P) satellite in low Earth orbit. It operates at 18, 21, and 37 GHz in a nadir-only viewing direction which is co-aligned with the T/P radar altimeters. The TMR monitors and corrects for the propagation path delay of the altimeter radar signal due to water vapor and nonprecipitating liquid water in the atmosphere. The paper describes the TMR instrument and the radiometric instrument calibration required to derive antenna temperature (TA ) from the raw digital data. TA precision of 0.4 K is predicted on orbit in all expected thermal environments, TA accuracy of 0.5-0.6 K is expected following a post-launch field calibration campaign. These performance figures represent a significant improvement over those of the Seasat and Nimbus-G Scanning Multichannel Microwave Radiometer on which TMR is based. The improvements are the result of specific hardware design and calibration changes. Hardware changes include a redesigned feed horn, to reduce impedance mismatches, and the addition of radomes over the feed and sky horns, to reduce thermal variations. Calibration changes involve more extensive temperature cycling and data analysis during thermal/vacuum testing  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号