首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
多个风电场相邻时,若某一风电场近端发生严重故障,其撬棒投入实现低电压穿越的同时,将对相邻风电场造成影响。根据故障时双馈风力发电机(doubly-fed induction generator,DFIG)的无功功率特性,分析了撬棒投入对相邻风电场的影响以及造成相邻风电场撬棒连锁动作的原因,提出了一种基于 DFIG 转子串联电阻和静止同步补偿器(static synchronous compensator,STATCOM)的综合保护方案及相应的控制策略,以协调多风电场之间的低电压穿越,防止撬棒的连锁动作使电网电压和无功功率进一步恶化。仿真结果表明,所提保护方案能够抑制相邻风电场 DFIG 的转子电流,防止撬棒连锁动作,并能最大限度补偿无功缺额,提高出口电压。  相似文献   

2.
撬棒保护的接入及其电阻值会改变低电压穿越期间双馈感应发电机(DFIG)的无功功率动态特性,由此将影响风电场周边区域电网电压稳定性。针对这一问题,详细分析不同电网电压跌落水平和低电压过渡不同时期撬棒保护接入对DFIG无功特性的影响机理及其变化规律。提出了一种改善机组无功特性的变阻值撬棒保护方案,制定了该方案的撬棒阻值整定方法及其投切控制策略,并进行仿真对比研究。仿真结果表明,相比以限流为目标的传统撬棒保护和以尽快恢复机组可控性的主动式撬棒保护,所提撬棒保护方案不仅能在故障持续期间缩短撬棒投入时间,减少撬棒投入期间DFIG吸收的无功功率,提升出口电压。同时也能最大限度降低故障切除时的DFIG无功振荡峰值,加速电网电压恢复,有助于系统区域电压稳定性的提升。  相似文献   

3.
双馈感应发电机(DFIG)采用转子撬棒(Crowbar)进行低电压穿越保护时,须向电网吸收大量的无功功率,不利于故障过程中电网电压恢复。文中在双馈风电场中加入静止同步补偿器(STATCOM),用以补偿Crowbar动作后DFIG异步运行时对电网的无功需求。通过不同程度电压跌落下风电场动态仿真进行验证,结果表明电网电压跌落严重时STATCOM的无功补偿效果明显,电网故障中DFIG还能向电网提供一定出力,维持电网稳定运行;与只投入Crowbar的情况相比,同时加入STATCOM和Crowbar不会对DFIG各分量产生冲击;电压跌落轻微时DFIG可通过自身的变流器调节实现低电压穿越,投入Crowbar和STATCOM反而会加剧系统的振荡。  相似文献   

4.
为研究双馈风电机组(doubly fed induction generator,DFIG)低电压穿越对风电场动态等值的影响,提出了一种基于撬棒控制策略的双馈风电场动态等值建模方法。首先通过对DFIG在电网故障时的转子电流分析,给出了时域下转子暂态电流表达式。然后研究撬棒电路两种常用控制策略在不同电压跌落程度及DFIG运行状况下对风电机组低电压穿越的影响,仿真结果表明两种控制策略均有各自的适用范围。在此基础上,文中提出了撬棒电路投切曲线及控制策略选择区域曲线,以此判断电网故障时撬棒电路投切以及投切时控制策略选择情况。考虑故障前一时刻风电场机群划分情况,在电网故障时以实测风速与撬棒电路是否动作共同作为分群指标,将撬棒电路动作机组从故障前原"N"个机群中独立出来形成"N+1"个机群,利用容量加权法计算各机群参数,建立多机等值模型。最后在MATLAB/Simulink平台上搭建算例,验证了该等值方案的有效性和准确性。  相似文献   

5.
为研究风电机组与系统的交互影响,建立了低电压故障下双馈式风电机组(doubly-fed induction generator,DFIG)的保护控制措施与系统动态特性之间的联系,分别从机组安全约束角度和系统区域电压稳定角度,探讨了双馈式风电机组撬棒(crowbar)保护电阻取值、投切控制策略,在分析电机发生短路故障后撬棒保护投入期间电气量特性基础上,给出了双馈电机投入撬棒后定转子电流峰值估算式以及撬棒电阻取值约束式。算例从系统角度分析了不同故障类型、不同投切时间和不同撬棒阻值情况下大范围投入撬棒保护后对风电场周边区域电压稳定的影响,并分析了多风电场在电网大扰动后投入撬棒的相互影响。算例结果表明,选择合适的撬棒阻值和投切控制策略可以提高机组低电压穿越(low voltage ride through,LVRT)能力,并降低风电场在撬棒保护大范围投入后对系统电压稳定的不良影响。  相似文献   

6.
双馈风电机组在电网故障期间保持并网运行,其输出的短路电流对电力系统保护和控制产生较大影响。电网故障下,双馈风电机组通常先投入撬棒保护并闭锁转子侧变流器,而后重启转子侧变流器控制机组输出无功功率。目前,针对双馈风电机组短路电流已有较多研究,但是尚未考虑低电压穿越全过程中机组运行状态切换所造成的电气参量的变化,可能造成短路电流的分析和计算出现较大误差。为此,分别建立了撬棒投入和转子侧变流器无功控制两个阶段的双馈感应发电机(doubly-fed induction generator,DFIG)数学模型,推导了这2个阶段DFIG定子短路电流的表达式,分析了低电压穿越方式的切换对DFIG输出短路电流的影响,提出了低电压穿越全过程DFIG短路电流的计算方法,并通过时域仿真验证了理论分析的正确性。  相似文献   

7.
动态调整转子撬棒阻值的双馈风电机组低电压穿越方法   总被引:2,自引:0,他引:2  
双馈感应发电机(DFIG)等大型电力电子发电设备接入电网,改变了电力系统源端的暂态特性。在系统故障下,为保证DFIG不脱网运行,常采用转子撬棒保护电路完成低电压穿越(LVRT)。DFIG的暂态特性与故障发生时刻和故障程度有关,传统固定阻值的撬棒电路很难保证不同故障下的LVRT。从时域角度推导了撬棒投入后的暂态转子电流表达式,并提出了基于动态调整转子撬棒阻值的DFIG的LVRT方案,制定了转子撬棒自适应控制策略及阻值整定方法。仿真分析了不同电压跌落深度下所提方案的LVRT特性。结果表明,所提方法不仅能够满足不同电压跌落深度下的转子电流和直流母线电压,而且降低了撬棒投入次数及时间。  相似文献   

8.
风机转子撬棒投切对电力系统暂态稳定性的影响   总被引:1,自引:0,他引:1  
转子侧撬棒保护电路是双馈风机常用的低电压穿越措施,故障期间撬棒保护电路的投入和切除会产生冲击,对电网的暂态稳定性产生影响。将风电场的注入功率与等值系统的机械功率联系在一起,推导了故障期间风电场低电压穿越动作对等值系统机械功率的影响。基于拓展等面积准则,从理论上分析风电场低电压穿越动作对电力系统暂态稳定的影响原理,以加速能量作为评判撬棒对系统暂态稳定影响程度的指标,并进行了仿真分析。结果表明,风机撬棒动作主要影响电力系统的加速过程,两机模式下其影响程度与风机并网位置有关,越靠近功率输送端,撬棒动作越有利于暂态稳定。该研究可为低电压穿越方案的优化设计提供理论参考。  相似文献   

9.
分析了常规电源对双馈感应发电机(DFIG)的电压支撑作用,将DFIG接入点以外的系统进行戴维南等值,利用DFIG短路电流周期分量与计算电抗、开路电压的关系曲面,提出了DFIG接入电网的短路电流运算曲面法。针对撬棒投入和未投入时DFIG的暂态特性差异,以转子电流峰值为撬棒投入的判据,分析撬棒动作与故障后DFIG端电压关系;考虑转子励磁控制和撬棒动作延时,推导了DFIG三相短路电流计算式;制定不同时刻DFIG三相短路电流与计算电抗、开路电压运算曲面,给出计及低电压穿越的DFIG短路运算曲面法计算步骤,通过仿真验证该方法的正确性。  相似文献   

10.
经VSC-HVDC并网风电系统在风电场侧故障时,风电机组出口母线电压过低,极易引起风力机脱网。而双馈风力发电机(DFIG)传统的Crowbar技术在故障时将转子侧变流器(RSC)短接,使发电机定子侧失去了为电网提供无功的能力,风力机的低电压穿越能力较低。提出一种改进的DFIG模型,加入了主动式DC-Chopper,与传统的Crowbar相配合,降低Crowbar动作的概率,使得DFIG转子侧变流器可以控制定子侧在故障时期继续提供无功功率。并利用此改进的DFIG与VSC-HVDC协调控制,改善风电场侧母线电压水平。通过算例仿真表明,在严重故障时采用改进式DFIG的Crowbar仍未动作。从而大大降低Crowbar动作的概率,双馈风电机组RSC故障期间可以继续投入运行并为电网提供无功支持。完成故障期间DFIG两侧变流器与VSC-HVDC风电场侧变流器(WFVSC)之间的无功协调,使风电场具有更好的低电压穿越能力(Low Voltage Ride Though, LVRT)。  相似文献   

11.
经VSC-HVDC并网风电系统在风电场侧故障时,风电机组出口母线电压过低,极易引起风力机脱网。而双馈风力发电机(DFIG)传统的Crowbar技术在故障时将转子侧变流器(RSC)短接,使发电机定子侧失去了为电网提供无功的能力,风力机的低电压穿越能力较低。提出一种改进的DFIG模型,加入了主动式DC-Chopper,与传统的Crowbar相配合,降低Crowbar动作的概率,使得DFIG转子侧变流器可以控制定子侧在故障时期继续提供无功功率。并利用此改进的DFIG与VSC-HVDC协调控制,改善风电场侧母线电压水平。通过算例仿真表明,在严重故障时采用改进式DFIG的Crowbar仍未动作。从而大大降低Crowbar动作的概率,双馈风电机组RSC故障期间可以继续投入运行并为电网提供无功支持。完成故障期间DFIG两侧变流器与VSC-HVDC风电场侧变流器(WFVSC)之间的无功协调,使风电场具有更好的低电压穿越能力(Low Voltage Ride Though,LVRT)。  相似文献   

12.
针对传统撬棒电路(采用固定电阻)在解决双馈风力发电机(DFIG)低高电压连锁故障穿越时,难以兼顾发电机转子侧电流和直流母线电压的抑制问题,采用电机电磁暂态分析的方法,找出了双馈风力发电机转子电流、电压与撬棒电阻的关系,提出一种撬棒电阻动态自适应的控制方法。该方法适用于低电压、高电压及低高电压连锁故障,解决了电网故障穿越时无法同时抑制转子电流和母线电压的波动问题。采用理论分析和仿真实验,证明该方法在电压跌落故障、电压骤升故障以及低高压连锁故障下能够有效地抑制转子电流和直流母线电压的波动,提高了系统的故障穿越能力。  相似文献   

13.
风电场在低电压故障穿越时,由于系统保护设计不合理,故障不能快速切除,无功补偿控制策略存在问题或风机不具备高电压穿越能力,导致低电压穿越故障发生之后出现骤升故障。针对这一工况,在考虑了电网电压骤降恢复阶段的前提下,计及了撬棒电路是否投入对双馈风电机组的影响。因此,首先建立了考虑电压骤降恢复阶段和撬棒电路的暂态数学模型,推导出未投入撬棒电路和投入撬棒电路两种情形下的定、转子电流表达式。然后详细分析了是否投入撬棒电路两种情形对二次骤升故障穿越特性的影响,得到了撬棒电路的投入条件和最优的撬棒电阻投入阻值。最后通过仿真验证,表明了推导的定转子电流表达式、投入条件及最优撬棒阻值的合理性,同时也说明了暂态模型的正确性,为分析二次骤升故障穿越特性提供了精确的模型。  相似文献   

14.
新能源发电技术在电力系统中逐渐占据越来越大的比重。为了实现电力系统安全运行的稳定性,需要了解系统故障的影响,根据双馈风力发电机的撬棒动作情况以及相关暂态特性完成短路电流计算。通过建立双馈风力发电机模型,并根据双馈风力发电机在三相短路故障期间投入的撬棒保护,对风机内在机理的动态变化进行分析,精确计算定转子磁链在故障期间的变化情况,从而得到撬棒动作时的新三相短路电流计算方法。最后通过PSCAD/EMTDC 进行仿真验证,并利用Matlab检验计算方法的精确度。同时根据风场的低电压穿越能力与电流保护装置的特性,提出一种针对双馈风电场的低电压穿越保护方案。该方案根据低电压穿越能力的电压变化要求以及短路电流的大小协作完成对线路的保护,以便清除故障后风场电压可以及时恢复并且保持并网运行,且在一定程度上可应对低电压穿越能力的延时问题。  相似文献   

15.
研究了Crowbar投入、退出时间对双馈感应风力发电机低电压穿越性能的影响,并在Matlab/Simulink仿真平台上搭建了含Crowbar保护电路的DFIG模型,验证了Crowbar投切时间对DFIG低电压穿越的影响,保证故障发生时,Crowbar电路按设定的投切时间工作,短路电流能根据电流的变化规律快速衰减,转子电阻电压不超过直流母线电压;采用阈值投入延时切出的方案,防止Crowbar保护在电网故障时多次投切。仿真结果表明,经过适当的延时切除Crowbar电路可以避免Crowbar电路多次动作和转子再次过电流,能很好地保护风电机组,提高其低电压穿越能力。结果显示,低电压穿越效果很大程度上受退出时间影响。  相似文献   

16.
双馈感应风力发电机实现LVRT仿真研究   总被引:1,自引:0,他引:1  
在基于双馈电机的并网风力发电系统中,一般采用附加转子侧撬棒电路的方法来实现低电压过渡。当电网电压发生严重短暂跌落故障时,可以同时附加直流侧卸荷电路以更好地实现低电压穿越。为实现低电压运行,撬棒电阻值的选取至关重要。在考虑最大转子故障电流和直流母线钳位效应的双重因素下,给出了双馈式风电机组撬棒保护电阻取值约束式,并讨论了DFIG附加两种保护电路后具体的低电压穿越控制策略。对2MW DFIG风力发电系统进行仿真,结果表明,在选择合适的保护电阻基础上,通过对保护电路的合理控制,附加撬棒电路和直流侧卸荷电路可以有效帮助DFIG实现低电压穿越运行。  相似文献   

17.
在电网发生电压跌落故障的情况下,双馈异步发电机(Doubly-Fed Induction Generator,DFIG)多采用撬棒保护电路以实现低电压穿越(Low Voltage Ride Though,LVRT),而撬棒阻值的选择对机组的LVRT效果影响很大。从DFIG在电压跌落故障下的暂态数学模型出发,运用空间矢量分析和拉普拉斯变换的方法,推导出风电机组在电压跌落故障下的暂态电流时域表达式、转子侧故障电流的计算式。由此提出一种切合工程实际的撬棒阻值整定方法,解决了投入撬棒保护电路后转子侧出现过电流和直流母线过电压的问题。算例及仿真实验数据均表明,采用该方法可有效抑制暂态故障分量,显著提高风力发电系统的LVRT水平。  相似文献   

18.
双馈变速风电机组低电压穿越控制方案的研究   总被引:2,自引:0,他引:2  
根据紧急电网规程要求,电网故障时风电机组应能保持与电网连接并向系统不间断供电,故人们开始关注风电机组在暂态过程中的表现,并相应提出了低电压穿越(LVRT)要求.讨论了外部电压骤降下DFIG风电系统的低压穿越控制策略和保护方案,在电力系统仿真分析软件DIgSILENT/Power Factory中建立了双馈风电机组的详细模型及其LVRT控制模型,并对一个风电场连接无穷大系统进行了仿真,比较了不同故障严重程度时双馈机组的低电压控制方案.仿真结果表明,转子快速短接保护装置(Crow-bar)在电网暂态过程中可以有效防止过电流对转子变频器的危害,其切除时刻对故障电网恢复和变频器保护有较大影响.通过合理地控制能使风电场穿越较为严重的电网故障,并且无需吸收大量无功功率,有利于电网的恢复.  相似文献   

19.
针对撬棒(Crowbar)保护的双馈感应风力发电机(DFIG)暂态特性分析,常规研究为简化求解过程,均认为故障发生时Crowbar保护瞬间投入,忽略了不同程度的Crowbar动作延时,对DFIG暂态过程的精确分析造成一定影响。为此,对计及撬棒保护投入时间影响的双馈感应风力发电机暂态全过程进行了详细分析,依据故障特征及Crowbar保护动作情况将电网电压故障全过程分为三个阶段进行研究:第一阶段为故障发生,定子电压跌落,但Crowbar保护尚未投入;第二阶段为经过短暂的延时,Crowbar保护投入,同时转子侧换流器封锁;将电网电压恢复后的动态响应作为第三个阶段。仿真结果表明,随着Crowbar保护投入延时的增加,DFIG的瞬态性能将恶化;在设置Crowbar电阻时,应考虑故障全过程中转子电流的最大值并计及Crowbar保护投入延时的影响。  相似文献   

20.
撬棒保护与电网交直流控制协调的风电机组脱网抑制方法   总被引:1,自引:0,他引:1  
多次发生的大规模风电机组相继脱网事故严重影响集群风电并网消纳和电网安全。撬棒保护电路是目前在风电场中广泛运用的一种低电压穿越方式,但其大范围投入可能造成风电场从电网吸收过多无功功率而导致电网暂态电压稳定恶化。文中提出一种综合风电机组撬棒保护、直流系统功率调制和交流系统紧急电压控制来抑制风电机组相继脱网的方法,其核心是利用撬棒保护提高风电机组低电压穿越能力,降低风电机组在故障期间的低压脱网代价;通过风电场近区大容量直流的功率快速调制并协同交流侧紧急电压调控手段,改善风电送出通道的潮流分布,以提高故障后电网暂态电压稳定性。对实际电网的时域仿真结果验证了该方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号