首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为生产纳米纤维,已经开发了许多静电纺丝技术。数以百计的不同聚合物的溶液或熔体已被加工成纳米纤维,最普通的形式是纳米纤维层。除此之外,含有相应无机物的辅助聚合物通过静电纺丝,接着进行退火处理,可把各种无机物转化为纳米纤维。  相似文献   

2.
核/壳结构的纳米纤维是一种功能化的复合纳米纤维,制备方法有化学涂覆、表面化学结合、共混静电纺丝和同轴静电纺丝等.重点介绍利用同轴静电纺丝法制备核/壳结构复合纳米纤维,综述了同轴静电纺丝核/壳结构复合纳米纤维在组织工程、药物包覆、催化和其他领域的潜在应用价值.  相似文献   

3.
纳米纤维的应用前景   总被引:1,自引:0,他引:1  
钟智丽  王训该 《纺织学报》2006,27(1):107-110
论述了纳米纤维制备新方法和典型纳米纤维的应用前景。指出静电纺丝技术可制得聚合物纳米纺织纤维长丝、实心纳米碳纤维、生物降解性聚合物纳米纤维和聚苯胺及其与常规聚合物共混的纳米导电纤维,其直径取决于纺丝工艺参数;静电纺丝是得到纳米纤维最重要的方法,也是最有可能实现纳米纤维工业化生产的技术。  相似文献   

4.
为更好地通过静电纺丝技术制备多孔碳纳米纤维,综述了近年来国内外静电纺丝技术实现工业化的可行性,静电纺丝制备多孔碳纳米纤维的方法、多孔结构类型以及多孔碳纳米纤维的应用等方面的最新进展。主要介绍了聚合物与聚合物共混以及聚合物与无机粒子共混静电纺丝多孔碳纳米纤维的2种方法的制备原理及所制得多孔碳纳米纤维的特点,并根据孔结构形状将多孔碳纳米纤维分为中空结构、介孔结构、多级孔结构和碳壳-蜂巢芯结构等类型。最后介绍了静电纺丝多孔碳纳米纤维在电化学、储氢、催化和吸附等领域的应用情况,并对未来多孔碳纳米纤维的发展前景进行了展望。  相似文献   

5.
静电纺丝是目前唯一能够直接、连续制备聚合物纳米纤维的方法。概述了静电纺丝技术及其发展历程,静电纺丝射流的稳态和非稳态的研究成果。介绍了静电纺丝机、静电纺丝技术的新进展及静电纺纳米纤维膜的应用。最后指出静电纺丝的研究方向。  相似文献   

6.
静电纺纳米纤维膜被广泛地研究并应用在锂离子电池领域,其中:用作负极材料的包括碳纤维、碳/无机复合材料、(过渡)金属氧化物及锂金属氧化物;用于正极材料的有锂金属氧化物和金属氧化物;隔膜材料主要有聚合物及聚合物/无机物复合隔膜两类。大量的研究表明,静电纺丝纳米纤维膜以其优异的纳米特性在锂离子电池中发挥重要作用。综述最新应用于锂离子电池的正负极以及隔膜的静电纺纳米材料,并对其未来的发展方向进行展望。  相似文献   

7.
综述了电纺制备纳米纤维的基本原理和最新发展,简要回顾了纳米纤维静电纺丝的发展历史,详细阐述了纳米纤维静电纺丝制备方法的最新进展。对文献报道的越来越多聚合物采用静电纺丝法制备纳米纤维,在静电纺丝中要想得到优良的纳米纤维,过程参数十分重要。此外,对各国研究者最近发展的几种新型的静电纺丝装置也进行了讨论。  相似文献   

8.
静电纺丝纳米纤维的方法与应用现状   总被引:2,自引:0,他引:2  
主要介绍了利用不同的静电纺丝收集装置设计得到多种排列形式的纳米纤维聚集体及聚合物纳米纤维的应用.说明了静电纺丝技术可以得到各种各样的聚集体,是目前制备纳米纤维比较有效的方法,提高了由纳米纤维制备的产品质量,可以应用于特定的改性方面.  相似文献   

9.
聚合物纳米纤维由于其独特的纳米结构和性能特征,在膜材料、生物医用材料等领域具有广阔应用前景。静电纺丝技术是制备聚合物纳米纤维的最有效方法,已获得了广泛应用。作为纤维材料,力学性能是其最重要的物理性能之一。然而,因其尺寸极其微小,聚合物纳米纤维力学性能表征非常困难。近十多年来,科学家开展了系列研究,获得了关于静电纺丝聚合物纳米纤维结构与力学性能的重要研究成果。由于纳米受限等的影响,静电纺丝纳米纤维具有与普通纤维不同的力学性能特征与凝聚态结构。文章综述了表征单根聚合物纳米纤维力学性能的方法,总结了纳米纤维力学性能与其尺寸的依赖关系,简要介绍了描述静电纺聚合物纳米纤维聚集态结构模型,并对纳米纤维结构与性能关系研究进行了展望。  相似文献   

10.
为获得比常规静电纺丝纤维直径更细的聚丙烯腈(PAN)纳米纤维,采用复合静电纺丝方法制备了聚丙烯腈/醋酸丁酸纤维素(PAN/CAB)复合纳米纤维,再溶解掉复合纳米纤维中的CAB组分,得到超细PAN纳米纤维并对其进行氨基化改性后用于吸附直接红23(DR23)染料。研究了PAN和CAB的混合比例、纺丝溶液质量分数和纺丝液挤出速度3个因素对所得PAN 纳米纤维直径的影响,并比较了常规静电纺和复合静电纺制备出的PAN纳米纤维改性后的染料吸附量。实验结果表明:该方法制得的PAN纳米纤维的平均直径在50~80 nm范围内,其中当PAN和CAB的质量比为15:85、纺丝溶液质量分数为15%、纺丝液挤出速度为1.5 mL/h、纺丝电压为10 kV、接收距离为20 cm时,得到的PAN纳米纤维的平均直径为50 nm;改性后纳米纤维对DR 23的平衡吸附量达833mg/g。  相似文献   

11.
利用共混静电纺丝技术,将合成的卤胺前驱体聚合物PSPH与乙烯-乙烯醇共聚物(EVOH)进行复合制备EVOH/PSPH复合纳米纤维膜,并通过氯化处理EVOH/PSPH复合纳米纤维膜制备可用于水消毒的卤胺改性EVOH纳米纤维膜。重点分析卤胺前驱体聚合物PSPH的引入对EVOH/PSPH复合纳米纤维膜的纤维形貌、孔径结构及力学性能的影响,并探究卤胺改性EVOH纳米纤维膜的杀菌效果和杀菌机理。试验结果表明,质量分数为1%的PSPH可有效改善EVOH/PSPH复合纳米纤维膜的纤维形貌和孔径结构,增强其力学性能;卤胺改性EVOH纳米纤维膜具有良好的杀菌性能,其在5 min的接触时间内杀菌效率高达99.999%。  相似文献   

12.
王曙东 《国外丝绸》2007,22(5):27-29
静电纺丝技术近年来在制备纳米纤维领域得到了广泛的应用,被认为是最简单有效的方法之一,运用这种方法已成功地制备了各种纳米纤维。本文主要综述了静电纺丝技术在制备复合纳米纤维所用的原料及装置方面的研究进展。  相似文献   

13.
为制备模拟细胞外基质结构的微纳尺度复合材料,利用静电纺丝技术制备了聚己内酯(Polycaprolactone,PCL)微米纤维膜,通过与纳米尺度的细菌纤维素(Bacterial Cellulose,BC)原位复合,制备了BC/PCL复合纤维支架。采用扫描电镜、红外光谱分析、X射线衍射分析对材料的形貌、结构进行了表征。通过单轴力学测试对复合材料力学性能进行了研究,并利用成纤维细胞对复合材料的生物相容性进行评价。结果表明:通过静电纺丝法制备的PCL微米纤维的平均直径,随聚合物纺丝液质量分数的增加有增加的趋势,BC与PCL微米纤维复合后,BC纳米纤维渗透入微米纤维膜内部,实现微纳米纤维较好的复合。红外光谱分析和X射线衍射分析进一步证明BC和PCL微米纤维成功复合。PCL微米纤维膜复合BC膜后,相比PCL微米纤维膜增加了其断裂强度,同时复合支架无明显细胞毒性,可应用于生物医学领域。  相似文献   

14.
将石墨烯(GR)纳米颗粒掺杂到聚丙烯腈(PAN)纺丝溶液中,利用静电纺丝技术制备石墨烯/聚丙烯腈(GR/PAN)复合纳米纤维膜。研究PAN质量分数、GR用量、纺丝电压及接收距离对GR/PAN复合纳米纤维膜形貌和过滤性能的影响,发现最优纺丝工艺参数为PAN质量分数14.0%、GR用量1.5%、纺丝电压26 kV、接收距离14 cm、注射速度1 mL/h。此最优纺丝工艺参数制备的GR/PAN复合纳米纤维膜的过滤效率为98.86%,过滤阻力为110.30 Pa。  相似文献   

15.
静电纺丝可制备高比表面积、连续、结构可控的一维纳米材料,并具有设备简单、操作方便和可规模制备等优点,是目前唯一可连续制备聚合物纳米纤维的工艺技术,广泛应用于各种一维纳米材料制备。本文综述了静电纺丝制备高分子、无机、复合及结构可控一维纳米材料的研究进展。  相似文献   

16.
静电纺丝技术主要用于纳米纤维的生产。早在1934年,Formhals就在其专利中报道了该项技术。最近几年,研究者们将静电纺丝技术应用于如生物多聚体、工程塑料、导电聚合物、嵌段聚合物、陶瓷和复合原料的纳米纤维生产,得到可控直径的纳米纤维。通过改变纳米纤维之间的排列与堆积方式,可以得到各种复合材料。排列整齐的纳米纤维可用于复合材料、结构增强体、电化学传感材料、骨架和组织工程材料的制造。静电纺纳米纤维膜具有比表面积大、孔隙率高等特点,适合做化学吸附材料和军用、民用的过滤材料。  相似文献   

17.
为研究静电纺丝丝素蛋白/聚己内酯共混复合纳米纤维的力学性能,为其在组织工程支架方面的应用提供指导,制备了静电纺丝丝素蛋白/聚己内酯共混复合纳米纤维膜,对其中单根纤维的力学性能进行了直接拉伸测试。测试结果显示了大变形情况下共混静电纺丝纤维的拉伸力学性能特点。通过总结其中的数学规律,进行参数拟合,获得了可应用于静电纺丝膜力学模型研究的应力应变函数。  相似文献   

18.
氧化石墨烯(GO)可视为一种非传统形态的软性材料,具有聚合物、胶体、薄膜,以及两性分子的特性。文中综述了近年来国内外通过静电纺丝技术制备氧化石墨烯复合纳米纤维的研究现状,主要介绍了氧化石墨烯-聚丙烯腈(GO/PAN)复合纳米纤维、氧化石墨烯-聚乳酸(GO/PLA)复合纳米纤维、氧化石墨烯-聚偏氟乙烯(GO/PVDF)复合纳米纤维、氧化石墨烯-丝素蛋白-聚乳酸羧基乙酸(GO/SF/PLGA)复合纳米纤维、氧化石墨烯-聚氨酯(GO/PU)复合纳米纤维、氧化石墨烯-纳米氧化锌-蚕丝丝胶(GO/nZnO/SS)复合纳米纤维的研究进展,以及它们在医药领域、过滤材料、水资源处理、压电材料、生物工程等领域的应用。  相似文献   

19.
本研究制备了静电纺串珠纤维复合滤纸和静电纺纳米纤维复合滤纸,对其微观形貌和孔径等结构特性以及过滤阻力、过滤效率和容尘量等过滤性能进行了分析。结果表明,静电纺串珠纤维复合滤纸和静电纺纳米纤维复合滤纸的纺丝层纤维平均直径接近,分别为225、250 nm。通过控制纺丝时间使二者的初始过滤阻力相近时,静电纺串珠纤维复合滤纸过滤效率为73.1%,静电纺纳米纤维复合滤纸过滤效率为38.2%。相同测试条件下,静电纺串珠纤维复合滤纸阻力上升速度比静电纺纳米纤维复合滤纸慢,达到相同终止阻力时,静电纺串珠纤维复合滤纸的作用时间更长、容尘量更大,二者的容尘量分别为119.29、96.23 g/m~2;并采用仿真模拟软件GeoDict建立模型,探究了两者阻力变化情况和容尘量的差异。  相似文献   

20.
《印染》2019,(19)
为制备出具有亲疏水双侧结构的复合纳米纤维膜,分别以聚乙烯醇(PVA)、聚丙烯酸(PAA)混合溶液和醋酸纤维素(CA)溶液作为纺丝原液进行静电纺丝成膜,然后利用轧车进行层合,制备出PVA/PAA/CA复合纳米纤维膜。采用MMT水分管理测试仪表征静电纺PVA/PAA/CA复合纳米纤维膜的水分管理性能和吸湿快干性能。结果表明,当静电纺时间排列为PVA/PAA-CA=6 h-4 h、层合压力为2 MPa时,静电纺PVA/PAA/CA复合纳米纤维膜的吸湿快干性最佳,水分管理能力可达4级。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号