首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Therapy-related acute myeloid leukemias with balanced translocations affecting the 11q23 chromosome region are one of the most serious complications of treatments with topoisomerase II inhibitor drugs as epipodophillotoxins and anthracyclines. 1,2-5 These cases are usually associated with short interval time from previous chemotherapies, absence of myeloid dysplastic phase, hyperleukocytosis and young age. We and others have recently identified and cloned the ALL1 gene at 11q23 band (also named MLL, HRX. Hrxt) which is consistently altered in t-AML following therapies with topo II targeting drugs. However, there are few reports of cases of t-AML, clinically and biologically similar to the subtype of leukemias secondary to exposure to topo II inhibitors drugs but without the involvement of the ALL1 gene. These observations suggest that genes other than ALL1 which are etiopathogenetically relevant for hematological neoplasias are located in this cytogenetic region.  相似文献   

2.
Translocations at chromosomal band 11q23 characterize most de novo acute lymphoblastic leukemias (ALL) of infants, acute myeloid leukemias (AML) of infants and young children, and secondary AMLs following epipodophyllotoxin exposure. The chromosomal breakpoints at 11q23 have been cloned from isolated cases of de novo ALL and AML. Using an 859-base pair BamHI fragment of human ALL-1 complementary DNA that recognizes the genomic breakpoint region for de novo ALL and AML, we investigated two cases of secondary AML that followed etoposide-treated primary B-lineage ALL. In the first case, the translocation occurred between chromosomes 9 and 11 and the breakpoint at 11q23 localized to the same 9-kilobase region of the ALL-1 gene that is disrupted in most of the de novo leukemias. In the second case the translocation was between chromosomes 11 and 19. The breakpoint occurred outside of the ALL-1 breakpoint cluster region.  相似文献   

3.
Chromosome band 11q23 is frequently involved in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) de novo, as well as in myelodysplastic syndromes (MDS) and lymphoma. Five percent to 15% of patients treated with chemotherapy for a primary neoplasm develop therapy-related AML (t-AML) that may show rearrangements, usually translocations involving band 11q23 or, less often, 21q22. These leukemias develop after a relatively short latent period and often follow the use of drugs that inhibit the activity of DNA-topoisomerase II (topo II). We previously identified a gene, MLL (myeloid-lymphoid leukemia or mixed-lineage leukemia), at 11q23 that is involved in the de novo leukemias. We have studied 17 patients with t-MDS/t-AML, 12 of whom had cytogenetically detectable 11q23 rearrangements. Ten of the 12 t-AML patients had received topo II inhibitors and 9 of these, all with balanced translocations of 11q23, had MLL rearrangements on Southern blot analysis. None of the patients who had not received topo II inhibitors showed an MLL rearrangement. Of the 5 patients lacking 11q23 rearrangements, some of whom had monoblastic features, none had an MLL rearrangement, although 4 had received topo II inhibitors. Our study indicates that the MLL gene rearrangements are similar both in AML that develops de novo and in t-AML. The association of exposure to topo II-reactive chemotherapy with 11q23 rearrangements involving the MLL gene in t-AML suggests that topo II may play a role in the aberrant recombination events that occur in this region both in AML de novo and in t-AML.  相似文献   

4.
Early infancy (< 1 year of age), massive tumor cell burden, and extremely poor prognosis are characteristic features of a particular subset of childhood acute leukemias (AL). In these cases, chromosome aberrations at the 11q23 band are the most frequently reported cytogenetic abnormalities. We have recently cloned a genetic locus named ALL-1, in which DNA breakpoints are clustered in leukemic patients with 11q23 aberrations. Analysis of the ALL-1 genomic configuration in DNA from 15 infants with AL showed specific ALL-1 rearrangements in 12 cases (80%), including 5 with normal karyotypes. These findings indicate that a consistent genetic defect underlies this particular leukemic subset.  相似文献   

5.
6.
The treatment of cancer with alkylating drugs or topoisomerase II inhibitors can be responsible for the development of myelodysplastic syndromes and acute myelogenous leukemia. Alkylating agents such as melphalan and cisplatinum mainly produce damages at chromosomes 5 and 7 whereas topoisomerase II inhibitors-induced lesions essentially affect chromosomes 11 and 21. Rearrangements of the MLL gene at band 11q23 are frequently observed in human de novo myeloid and lymphoid leukemia as well as in leukemia or myelodysplasia secondary to therapy with drugs targetting topoisomerase II such as the epipodophyllotoxins. A relationship between the treatment with etoposide on teniposide and the development of translocations of the MLL gene has been clearly evidenced. The potential molecular basis of the chromosomal rearrangements implicating topoisomerase II and its inhibitors are discussed. The chemical structure of the inhibitors, their mechanism of action and the genes targetted by these drugs are presented. DNA cleavages induced directly by topoisomerase II inhibitors or by the drug induced apoptotic cellular response are responsible for nonrandom chromosomal aberrations and contribute to leukemogenesis.  相似文献   

7.
Phenotypic conversion from acute myeloid leukemia (AML) to acute lymphoblastic leukemia (ALL) is rare. A 38-year-old man was initially diagnosed as having AML (FAB-M2) associated with the t(8;21)(q22;q22) chromosomal abnormality. The blasts showed myeloperoxidase (MPO) activity and CD13 antigen expression. He showed complete remission after standard chemotherapy for AML. However, the patient relapsed with blasts showing ALL morphology (FAB-L1), MPO negativity, and CD19 antigen expression 33 months after cessation of AML therapy. Cytogenetic analysis at relapse was unsuccessful. Molecular analysis of ALL blasts revealed immunoglobulin heavy-chain gene and MLL gene rearrangements but no AML1 gene. MLL gene rearrangement or the 11q23 chromosomal abnormality has been associated with therapy-related leukemia. The subsequent ALL in our patient may have been induced by the chemotherapy including daunorubicin, known as a topoisomerase II inhibitor.  相似文献   

8.
9.
One of the most serious possible consequences of cancer therapy is the development of a second cancer, especially leukemia. Several distinct subsets of therapy-related leukemia can be distinguished currently. These include classic therapy-related myeloid leukemia, leukemia that follows treatment with agents that inhibit topoisomerase II, acute lymphoblastic leukemia, and leukemias with 21q22 rearrangements or inv(16) or t(15;17). These types of leukemia are discussed in detail in this article.  相似文献   

10.
Leukemias with abnormalities in chromosome 11q23 occur frequently after exposure to topoisomerase II-reactive drugs. We investigated the characteristics and outcome of patients with de novo or secondary acute myelogenous leukemia (AML) or myelodysplastic syndrome (MDS) with abnormalities in chromosome 11q. Sixty-one patients had 11q abnormalities. Alterations involved 11q23 in 38 patients and other 11q abnormalities in 23. Sixteen patients had secondary disease, 12 involving 11q23, and four with other 11q abnormalities; 26 patients with de novo disease had 11q23 abnormalities and 19 other 11q abnormalities. The most common 11q23 abnormality was t(9;11), significantly more common in secondary (9/12) than in de novo (6/26) leukemias (p = 0.003). There were no significant differences in clinical characteristics between de novo and secondary groups involving 11q23. Five of 12 patients (42%) with secondary and 20/26 (77%) with de novo disease achieved complete remission (p = 0.05). Median survival was 6 weeks in the secondary group and 71 weeks in the de novo group (p = 0.001). There were no long-term survivors in either group. Results are similar when other 11q abnormalities are included. Adults with AML or MDS with 11q abnormalities secondary to prior chemotherapy have a worse prognosis than patients presenting de novo. However, 11q abnormalities define a population with a poor prognosis even when presenting de novo.  相似文献   

11.
Acute lymphoblastic leukemia (ALL) occurring in infants less than 1 year of age differs clinically and biologically from that observed in older children. Cytogenetically, 11q23 translocations are detected in approximately 50% of infant ALLs and fuse the 11q23 gene HRX with a variety of partner chromosomal loci. Overall, HRX rearrangements are detected molecularly in 70-80% of infant ALLs as compared to 5-7% of ALLs arising in older children. Two recently described molecular abnormalities in childhood ALL are ETV6 gene rearrangements and homozygous deletions of p16(INK4A) and/or p15(INK4B). Each of these abnormalities occurs in 15-20% of all childhood ALLs, and neither can be accurately identified by routine cytogenetic analyses. The incidence of these genetic abnormalities and their potential relationship to HRX gene status in infant ALL is unknown. Using Southern blot analyses, we determined ETV6 and p16(INK4A)/p15(INK4B) gene status in a cohort of infant ALLs. No ETV6 rearrangements or homozygous deletions (n=69) or homozygous p16(INK4A) and/or p15(INK4B) gene deletions (n=54) were detected in any of the infant ALLs. Therefore, ETV6 and p16(INK4A)/p15(INK4B) do not play a significant role in the pathogenesis of infant ALL, further emphasizing the distinctive biology of this subset of leukemias.  相似文献   

12.
13.
14.
We used single-strand conformation polymorphism (SSCP) analysis of p53 exons 4-8 to screen for possible mutations in 25 pediatric de novo leukemias with translocations of the MLL gene at chromosome band 11q23. Of the 25 patients, 21 were infants. Fifteen cases were acute myeloid leukemia (AML), eight were acute lymphoblastic leukemia (ALL), and two cases were biphenotypic. Nineteen cases were studied at diagnosis and six at time of relapse. p53 mutations were absent in all 19 cases studied at the time of diagnosis. The only mutation was a TGC-->TTC transversion (cys-->phe) at codon 141 in exon 5 in a case of infant ALL at relapse that occurred by subclone evolution after MLL gene translocation. We previously showed that p53 mutations are also absent in pediatric treatment-related leukemias with MLL gene translocations. The absence of p53 mutations at initial transformation may suggest that the anti-apoptotic effect of mutant p53 is not important in leukemias with MLL gene translocations. Alternatively, exogenous DNA damage may be the common feature in treatment-related and de novo cases. Since MLL gene translocations may occur through DNA repair and wild-type p53 is central to DNA repair, the absence of p53 mutations raises the possibility that wild-type p53, not mutant p53, may be important in the genesis of leukemias with these translocations.  相似文献   

15.
11q23 translocations (t(11q23)) are recurring cytogenetic abnormalities in both acute myeloid leukemia (AML) and acute lymphoblastic leukemia, involving the same gene, ALL1 (or MLL). Mixed lineage antigen expression has been reported in these leukemias, but its frequency and clinical significance are unknown. We immunophenotyped leukemia cells from 19 adult de novo AML patients with t(11q23) by multiparameter flow cytometry. Translocations included t(6;11)(q27;q23), t(9;11)(p22;q23), t(9;11;19)(p22;q23;q13.3), t(2;11)(11;17)(q37;q11q23;q11), t(11;17)(q23;q25), t(11;19)(q23;p13.1), t(11;19)(q23;p13.3) and t(11;22)(q23;q11). FAB types were M4 and M5. The committed stem cell and myeloid antigens HLADr, CD4dim, CD11b, CD13, CD15, CD32, CD33, CD38 and CD64 were each expressed in 80-100% of cases, and the early stem cell and lymphoid antigens CD34, CD56, CD3, CD2 and CD7 in 42, 39, 16, 5 and 5%, respectively. Antigen expression frequencies did not differ from those in 443 adequately karyotyped M4 and M5 cases without t(11q23). Fifteen patients (79%) attained complete remission (CR); median CR duration and survival were 10.0 and 15.1 months. CR duration and survival did not correlate with antigen expression. In particular, patients with t(9;11) survived longer than those with other t(11q23) (median not reached vs 7.6 months; P = 0.048), but antigen expression did not differ in the two groups. Thus frequencies of lymphoid antigen expression are similar in AML with t(11q23) and in other FAB M4 and M5 cases, treatment outcome does not differ in t(11q23) cases with and without lymphoid antigen expression, and better outcome of patients with t(9;11) compared to other t(11q23) does not correlate with differences in antigen expression. Mixed lineage antigen expression is not a distinctive feature of AML with t(11q23).  相似文献   

16.
The major established cause of acute myeloid leukemia (AML) in the young is cancer chemotherapy. There are two forms of treatment-related AML (t-AML). Each form has a de novo counterpart. Alkylating agents cause t-AML characterized by antecedent myelodysplasia, a mean latency period of 5-7 years and complete or partial deletion of chromosome 5 or 7. The risk is related to cumulative alkylating agent dose. Germline NF-1 and p53 gene mutations and the GSTT1 null genotype may increase the risk. Epipodophyllotoxins and other DNA topoisomerase II inhibitors cause leukemias with translocations of the MLL gene at chromosome band 11q23 or, less often, t(8;21), t(3;21), inv(16), t(8;16), t(15;17) or t(9;22). The mean latency period is about 2 years. While most cases are of French-American-British (FAB) M4 or FAB M5 morphology, other FAB AML subtypes, myelodysplastic syndrome (MDS), acute lymphoblastic leukemia (ALL) and chronic myelogenous leukemia (CML) occur. Between 2 and 12% of patients who receive epipodophyllotoxin have developed t-AML. There is no relationship with higher cumulative epipodophyllotoxin dose and genetic predisposition has not been identified, but weekly or twice-weekly schedules and preceding l-asparaginase administration may potentiate the risk. The translocation breakpoints in MLL are heterogeneously distributed within a breakpoint cluster region (bcr) and the MLL gene translocations involve one of many partner genes. DNA topoisomerase II cleavage assays demonstrate a correspondence between DNA topoisomerase II cleavage sites and the translocation breakpoints. DNA topoisomerase II catalyzes transient double-stranded DNA cleavage and rejoining. Epipodophyllotoxins form a complex with the DNA and DNA topoisomerase II, decrease DNA rejoining and cause chromosomal breakage. Furthermore, epipodophyllotoxin metabolism generates reactive oxygen species and hydroxyl radicals that could create abasic sites, potent position-specific enhancers of DNA topoisomerase II cleavage. One proposed mechanism for the translocations entails chromosomal breakage by DNA topoisomerase II and recombination of DNA free ends from different chromosomes through DNA repair. With few exceptions, treatment-related leukemias respond less well to either chemotherapy or bone marrow transplantation than their de novo counterparts, necessitating more innovative treatments, a better mechanistic understanding of the pathogenesis, and strategies for prevention.  相似文献   

17.
Thirty-two hematologic malignancies--nine with cytogenetically identified 12p abnormalities and 23 with whole or partial losses of chromosome 12--were selected for fluorescence in situ hybridization (FISH) investigations of 12p. These analyses revealed structural 12p changes, such as translocations, deletions, insertions, inversions and amplification, in 20 cases. ETV6 rearrangements were detected in three acute leukemias. One acute undifferentiated leukemia had t(4;12)(q12;p13) as the sole anomaly. The second case, an acute myeloid leukemia (AML), displayed complex abnormalities involving, among others, chromosomes 9 and 12. The third case, also an AML, had an insertion of the distal part of ETV6 into chromosome arm 11q and into multiple ring chromosomes, which also contained chromosome 11 material, resulting in an amplification of a possible fusion gene. The fusion partners in these cases remain to be identified. Thirty-one additional breakpoints on 12p could be characterized in detail. The majority of these breaks were shown to result in interchromosomal rearrangements, possibly indicating the location of hitherto unrecognized genes of importance in the pathogenesis of hematologic malignancies. The FISH analyses disclosed terminal or interstitial 12p deletions in 18 cases. Seven myeloid malignancies showed deletions restricted to a region, including ETV6 and CDKN1B, which has been reported to be frequently lost in leukemias. In four cases, the deletions involved both these genes, whereas two AML displayed loss of CDKN1B but not ETV6, supporting previously reported findings indicating a region of deletion not including this gene. However, one myelodysplastic syndrome lacked one copy of ETV6 but not CDKN1B. Hence, we suggest a minimal region of deletion on 12p located between the ETV6 and CDKN1B genes.  相似文献   

18.
Centrocytic lymphoma (CC) and intermediately differentiated lymphocytic lymphoma (IDL) are B-cell non-Hodgkin's lymphomas composed of lymphocytes presumably derived from follicle mantle cells. In these lymphomas, a specific chromosomal translocation, t(11;14)(q13;q32), has been described. Previous studies suggested an association between t(11;14) chromosomal translocations and BCL-1 rearrangements. To evaluate the association between BCL-1 rearrangements and CC/IDL, Southern blot analysis was performed on a panel of 20 cases of CC/IDL, 22 cases of morphologically similar non-Hodgkin's lymphomas, 11 cases of chronic B-cell leukemias, and 2 cases of myelomas. We used various probes covering a considerable proportion of the 120-kilobase BCL-1 locus, and rearrangements in 50% of CC/IDL (10 of 20) were detected. In CC, all 4 breakpoints were located at the major translocation cluster (MTC). In contrast, in IDL, rearrangements were detected in 3 different cluster regions: 2 cases in the MTC, 2 cases with a breakpoint 24 kilobases outside the MTC, and 2 additional cases with breakpoints found 3 kilobases 5' of the first exon of the PRAD1/CCND1 gene, which is located 120 kilobases outside the MTC. In addition, one leukemia showed a breakpoint 63 kilobases outside the MTC. In all cases, there was comigration of the rearranged 11q13 fragment and the immunoglobulin heavy chain-joining gene complex, indicating a t(11;14)(q13;q32) chromosomal rearrangement. Our results show that Southern blot analysis is helpful to identify CC/IDL, but multiple breakpoints are present over a large region, and therefore, many probes are necessary to cover all breakpoints.  相似文献   

19.
Hyperploidy is a rare finding in leukemias, with isolated cases of tetraploidy reported in acute myeloblastic and acute lymphblastic leukemias. We report the first case of acute myeloid leukemia with near-pentaploidy (5 n+/-) which was present in 100% of metaphases at diagnosis. By light microscopy, the leukemic blasts were exceptionally large and coarsely granulated. Following one cycle of induction chemotherapy, complete morphologic and cytogenetic remission was documented. Four weeks later relapse occured, at which time the karyotype was diploid and the morphological and immunophenotypic characteristics were those of a lymphoid leukemia. However, the presence of three aberrant chromosomes (5q+, 6q+ and 20q+) confirmed that this was clonal evolution of the original myeloid leukemia. To the best of our knowledge, this case represents the first report of near-pentaloidy in de novo, pretreatment human leukemia.  相似文献   

20.
The human ALL-1/MLL/HRX gene on chromosome 11q23 is the site of many locally clustered chromosomal alterations associated with several types of acute leukemias, including deletions. partial duplications and reciprocal translocations. Structurally variant proteins derived from an altered ALL-1 gene presumably make essential contributions to the malignant transformation of hematopoietic progenitor cells. The ALL-1 gene is spread over approximately 92 kb and consists of at least 37 exons. An exon/intron map including the position of the 3'-end of the gene and a detailed restriction map were produced and an updated map is presented. Data from other laboratories were incorporated where compatible. Exon/intron boundaries were sequenced and an intron-phase analysis was performed. The results are expected to contribute to a better understanding of those structural alterations of the gene that conserve the open reading frame and produce presumably oncogenic variants of the ALL-1 protein. They will also facilitate the rapid molecular diagnosis of structural alterations of this gene and the choice of therapeutic options. Mechanisms that may potentially account for the striking clustering of the translocation breakpoints in the breakpoint cluster region of the gene are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号