首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
针对薄宽带钢冷轧过程中易发多发的局部型中浪瓢曲缺陷,引入非均匀载荷宽度、弹性约束系数及平均张应力建立了屈曲变形的解析计算模型。应用能量最低原理对屈曲变形区域进行搜索求解,得到了局部型中浪屈曲临界条件(包括临界应力、屈曲波长和屈曲波宽),获得了其与非均匀载荷宽度、弹性约束系数、平均张应力的关系,并发现平均张应力是产生局部型中浪的重要影响因素。应用样条有限元方法对局部型中浪进行数值仿真分析,验证了屈曲解析计算方法的正确性。在实验轧机上进行了轧制研究,通过轧制获得了局部型中浪屈曲模态,对实验结果分析得到了相对应的屈曲临界条件,与解析法和样条有限元法结果基本吻合,证明了样条有限元计算方法与解析计算方法的正确性及其工程应用价值。  相似文献   

2.
Effective vibration recognition can improve the performance of vibration control and structural damage detection and is in high demand for signal processing and advanced classification.Signal-processing methods can extract the potent time-frequency-domain characteristics of signals;however,the performance of conventional characteristics-based classification needs to be improved.Widely used deep learning algorithms(e.g.,convolutional neural networks(CNNs))can conduct classification by extracting high-dimensional data features,with outstanding performance.Hence,combining the advantages of signal processing and deep-learning algorithms can significantly enhance vibration recognition performance.A novel vibration recognition method based on signal processing and deep neural networks is proposed herein.First,environmental vibration signals are collected;then,signal processing is conducted to obtain the coefficient matrices of the time-frequency-domain characteristics using three typical algorithms:the wavelet transform,Hilbert-Huang transform,and Mel frequency cepstral coefficient extraction method.Subsequently,CNNs,long short-term memory(LSTM)networks,and combined deep CNN-LSTM networks are trained for vibration recognition,according to the time-frequencydomain characteristics.Finally,the performance of the trained deep neural networks is evaluated and validated.The results confirm the effectiveness of the proposed vibration recognition method combining signal preprocessing and deep learning.  相似文献   

3.
Structural design simultaneously governed by earthquakes and environmental vibrations has received a lot of attention in recent years.Base-isolated composite structures are typically used in the above-mentioned structural design.The corresponding analysis involves validating structural safety under earthquakes and human comfort under environmental vibrations through a time-history analysis.Thus,a reasonable damping model is essential.In this work,the representatives of viscous damping model and rate-independent damping model,namely the Rayleigh damping model and uniform damping model,were adopted to investigate the influence of damping models on the time-history analysis of such structural designs.The energy dissipation characteristics of the above-mentioned damping models were illustrated via a dynamic test of recycled aggregate concrete specimens.A case study was performed on a base-isolated steelconcrete composite structure.The dynamic responses under the excitation of earthquakes and environmental vibrations were compared using different damping models.The uniform damping model was found to be more flexible than the Rayleigh damping model in dealing with excitations with different frequency components.The uniform damping model is both theoretically advantageous and easy to use,demonstrating its potential in dynamic analysis of structures designed simultaneously governed by earthquakes and environmental vibrations.  相似文献   

4.
全球数字3D电影领域的领头羊Real D公司于10月17日与欧洲投资商Terra Firma公司旗下在泛西欧拥有1600块银幕的Odeon院线以及UCI院线签署协议,将于未来2年中在英国、爱尔兰、德国、奥地利以及葡萄牙合作安装500块数字3D银幕.  相似文献   

5.
<正>本刊讯2014年12月23日,由中国建设报社、浙江省住房和城乡建设厅、绍兴市人民政府主办的第十二届中国建筑企业高峰论坛在绍兴市举行。来自全国各地的建筑行业主管部门、行业协会负责人,专家学者及企业代表等300余人齐聚一堂,围绕"创新融合,开放共赢"主题,共同分享了一场建筑行业思想盛宴。中国建设报社党委书记杜久才、社长翟建和中国建筑装饰协会会长李秉仁、中国土木工程协会副理事长刘  相似文献   

6.
<正>阅兵是展示辉煌的时刻,而为这一辉煌采取的所有的标准,不啻也是宝贵的财富,应当成为践行标准的榜样……这个月最令人难忘、最引人自豪、最提振国威的事情,当属"9.3"大阅兵,它有着以往没有的多重的亮点:首次以纪念抗日战争暨世界反法西斯战争胜利为阅兵主题,彰显维护和平是全世界人民共同的愿望。首次邀请外国军队代表参加分列式,体现纪念大会的国际性。首次组织抗战老兵包括国民党老兵参加,体现了对历史的尊重,体现全民族抗战的特色。首次编组英模部队方队受阅,展示中国共产党在抗战中定海  相似文献   

7.
汽车能满足人们生活、娱乐、工作的各种需求,为生活添加乐趣.商务车、房车、越野车或轿车,不管是驰骋还是安静地停放,都具有他们独特的气质,外型、轮廓、结构、颜色、车漆的纹理及其光泽度各有特点.拍摄广告就是要把汽车的这些独到之处提炼、表达出来,在观赏者印象中建立一个全方位的立体形象,激发消费者的购买愿望,这里就必须用到一个非凡的摄影手段--光线.  相似文献   

8.
Non-fullerene organic solar cell(NFOSC)has attracted tremendous attention due to their great potential for commercial applications.To improve its power conversion efficiency(PCE),generally,sequential solution deposition(SSD)methods have been employed to construct the graded vertical phase separation(VPS)of the bulk-heterojunction(BHJ)active layer for efficient exciton separation and charge transition.However,a variety of orthogonal solvents used in the SSD may lead to the unpredicted change in the BHJ morphology and introduce additional defects inside the BHJ bulk thus complicate the fabrication process.Here,a simple oscillating stratification preprocessing(OSP)is developed to facilitate the formation of graded VPS among the BHJ layer.As a result,a significant improvement is obtained in PCE from 10.96%to 12.03%,which is the highest value reported among PBDB-T:ITIC based NFOSC.  相似文献   

9.
Silicon is a low price and high capacity ancxje material for lithium-ion batteries.The yolk-shell structure can effectively accommodate Si expansion to improve stability.However,the limited rate performance of Si anodes can't meet people's growing demand for high power density.Herein,the phosphorus-doped yolk-shell Si@C materials(P-doped Si@C)were prepared through carbon coating on P-doped Si/SiOxmatrix to obtain high power and stable devices.Therefore,the as-prepared P-doped Si@C electrodes delivered a rapid increase in Coulombic efficiency from 74.4%to 99.6%after only 6 cycles,high capacity retention of-95%over 800 cycles at 4 A·g-1,and great rate capability(510 mAh·g-1at 35 A·g-1).As a result,P-doped Si@C anodes paired with commercial activated carbon and LiFePO4cathode to assemble lithium-ion capacitor(high power density of?61,080 W·kg-1at 20 A·g-1)and lithium-ion full cell(good rate performance with 68.3 mAh·g-1at 5 C),respectively.This work can provide an effective way tofurther improve power density and stability for energy storage devices.  相似文献   

10.
CIG前驱膜叠层方式对CIGS膜成分和结构的影响   总被引:1,自引:1,他引:0  
采用中频交流磁控溅射方法制备了三种不同叠层方式的CuInGa(CIG)前驱膜。采用固态法硒化,获得了CIGS吸收层。采用SEM和XRD观察和分析了薄膜的成分、组织结构和表面形貌。着重分析不同叠层方式的CIG前驱膜对CIGs吸收层薄膜成分、晶体结构的影响。结果表明,三种叠层方式的前驱膜都可以获得成分均匀、结构一致的CIGS吸收层薄膜。Ga可以有效抑制In2Se挥发相生成,保持成分的稳定性。以CuGa(top)/CuIn(bottom)形式的前驱膜有利于形成紧密晶粒排列的CIGS。  相似文献   

11.
铝合金汽车顶盖充液成形的数值模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
目的研究铝合金汽车顶盖拉延工序的充液成形工艺。方法基于有限元分析软件Dynaform,利用带局部刚性凹模整形的被动式充液成形工艺,通过建立有限元分析模型,优化成形过程中的关键工艺参数,分析变形规律并进行质量控制。结果成形过程中的液室压力加载路径、压边力、拉延筋,以及坯料形状等工艺参数对成形影响较大。液室压力不宜过早加载。液室压力过大或压边力过小不利于顶部产生充分塑性变形。压边力过大极易造成顶盖圆角处的破裂。结论该成形工艺可行,且数值模拟的准确性及适用性较高,采用该成形工艺可得到表面质量良好,未出现起皱、破裂缺陷的合格零件。  相似文献   

12.
金属构件的塑性加工不仅需要控制其形状尺寸,还要调控其微观组织和力学性能,以获得满足服役要求的产品。构件成形结束后,常需要通过热处理工艺调控其组织和性能,但由于成形过程中的变形参数影响其热处理前的微观组织,因此,也影响到其热处理过程的组织演变,进而影响构件的服役性能,导致热处理调控更加复杂。本文基于机器学习的方法,考虑变形参数对热处理的影响,建立了Ti2AlNb合金构件高温成形过程微观组织和力学性能的预测模型,并与有限元模拟软件结合,建立了Ti2AlNb合金构件成形-热处理的全流程模拟方法。本文通过该方法对Ti2AlNb管材高温压制-时效处理工艺进行了全流程的模拟,模拟结果表明变形和热处理参数均会对成形构件的组织和力学性能产生影响。进而通过成形和热处理实验对模拟结果进行了验证,模拟结果与实验结果的一致性较好。说明通过该方法,可以实现构件成形-热处理全流程的模拟和组织-性能预测,可用于指导加工工艺的制定。  相似文献   

13.
New trends in sheet metal forming are rapidly developing and several new forming processes have been proposed to accomplish the goals of flexibility and cost reduction. Among them, Incremental CNC sheet forming operations (ISF) are a relatively new sheet metal forming processes for small batch production and prototyping. In single point incremental forming (SPIF), the final shape of the component is obtained by the CNC relative movements of a simple and small punch which deform a clamped blank into the desired shape and which appear quite promising. No other dies are required than the ones used in any conventional sheet metal forming processes. As it is well known, the design of a mechanical component requires some decisions about the mechanical resistance and geometrical quality of the parts and the product has to be manufactured with a careful definition of the process set up. The use of computers in manufacturing has enabled the development of several new sheet metal forming processes, which are based upon older technologies. Although standard sheet metal forming processes are strongly controlled, new processes like single point incremental sheet forming can be improved. The SPIF concept allows to increase flexibility and to reduce set up costs. Such a process has a negative effect on the shape accuracy by initiating undesired rigid movement and sheet thinning. In the paper, the applicability of the numerical technique and the experimental test program to incremental forming of sheet metal is examined. Concerning the numerical simulation, a static implicit finite element code ABAQUS/Standard is used. These two techniques emphasize the necessity to control some process parameters to improve the final product quality. The reported approaches were mainly focused on the influence of four process parameters on the punch force trends generated in this forming process, the thickness and the equivalent plastic deformation distribution within the whole volume of the workpiece: the initial sheet thickness, the wall angle, the workpiece geometry and the nature of tool path contours controlled through CNC programming. The tool forces required to deform plastically the sheet around the contact area are discussed. The effect of the blank thickness and the tool path on the punch load and the deformation behaviour is also examined with respect to several tool paths. Furthermore, the force acting on the traveling tool is also evaluated. Similar to the sheet thickness, the effect of wall angle and part geometry on the load evolution, the distribution of calculated equivalent plastic strain and the variation of sheet thickness strain are also discussed. Experimental and numerical results obtained allow having a better knowledge of mechanical and geometrical responses from different parts manufactured by SPIF with the aim to improve their accuracy. It is also concluded that the numerical simulation might be exploited for optimization of the incremental forming process of sheet metal.  相似文献   

14.
Possibilities for manufacturing cellular metallic materials are reviewed. However, this study primarily concerns the role of a cell-wall structure in influencing the mechanical behavior of metallic foams. A porous low-carbon steel with a controlled porous structure is processed from spark plasma sintering of ferromagnetic metal segments with a special, elongated shape. The ferromagnetic metal segments are filled into a die-block and their orientation is settled by a static magnetic field. The cell-wall structures of the porous low-carbon steel can be modified in order to improve its performance because differences in the cell-wall structure substantially affect the mechanisms of deformation and failure under different types of loading. The optimal shape of the structure following the required macroscopic mechanical response is established by means of the search scheme of an evolution strategy.  相似文献   

15.
建立了带壁厚偏差管坯液压胀形的力学模型,揭示了不同轴向应力状态下壁厚偏差对管坯成形的影响规律,给出了带壁厚偏差管坯液压胀形加载路径设计的标准.针对某重型卡车桥壳预成形管坯的液压胀形工艺,进行了3种不同壁厚偏差管坯在不同典型加载路径下的有限元模拟,结果表明:内压升高至最大保持恒定,管坯薄壁侧均在合模前发生开裂且薄壁侧与厚...  相似文献   

16.
目的研究三维异形截面汽车纵梁充液成形过程的变形规律。方法通过数值模拟和试验研究相结合的方法,分析多工序中的充液成形过程,对影响构件成形性能的液压力加载路径关键参数进行分析。结果线性加载路径下试件最大减薄率为26.3%,试件出现了局部开裂现象。两段式线性加载条件下最大起皱指标为0.149,试件出现了起皱缺陷,最大壁厚减薄为23.2%,开裂现象并未明显缓解。分段式线性加载条件下试件的最大减薄率仅为16.8%,贴模偏移量为1.89 mm,未出现起皱叠料现象,成形质量较好,同时,试验结果与数值模拟结果有较好的一致性。结论液压力加载路径对试件壁厚分布影响较大,采用分段式线性加载,可以实现低压阶段的分段加压和有效补料,以及后期的线性高压整形,试件成形质量较高。  相似文献   

17.
随着微机电系统等领域的快速发展,对零件成形精度与性能的要求日益增加。超声振动辅助塑性成形是一种典型的能场辅助塑性成形工艺,相比于传统塑性成形工艺,具有流动应力低、材料成形能力高、界面摩擦少、成形质量较好等优势,被广泛应用于难成形材料加工、微成形、复杂构件成形等塑性成形过程。然而,由于不同塑性成形工艺中金属的变形行为特性存在较大差异,对塑性成形质量与成形性能进行预测有利于实现成形过程的形性协同控制。介绍了超声振动辅助塑性成形在体积成形工艺(镦粗、挤压、拉拔等)与板料成形工艺(拉伸、拉深、渐进成形、冲压等)中的应用及发展概况,讨论了超声振动对材料塑性变形过程中宏观表现与微观演化的影响。在已有研究基础上,重点分析了超声振动辅助塑性成形过程中成形能力预测(流动应力、成形极限等方面)和成形性能预测(表面性能、力学性能、微观组织等方面)的研究进展,为金属零部件成形高质量形性调控提供理论参考,并展望了超声辅助塑性成形工艺的发展趋势。  相似文献   

18.
综述了钛合金塑性成形关键技术的发展状况。重点介绍了成形与微观组织演化的研究与发展。在成形方面,主要讨论了省力成形技术在钛合金大型复杂构件成形中的应用,并给出了相关的实例,如钛合金构件的等温成形、连续/间断局部加载成形等;讨论了精确成形技术中的回弹控制与工艺优化等关键问题;在缺陷控制技术方面,主要讨论了如何控制裂纹出现及充填不满等问题;在微观组织演化方面,首先讨论了微观组织的演化机制,如织构与组织形态的演化;其次,讨论了微观组织演化的几种数值建模方法,如内变量法、晶体塑性理论及元胞自动机模型。最后,提出了钛合金构件塑性成形技术领域目前存在的问题与挑战。  相似文献   

19.
In powder metallurgy (P/M) the forming of industrial artifacts requires consolidation of loose powder into dense material leading to near-to-net shape components. In order to realize the economic advantages of the near-to-net shape formation, it is essential to understand the mechanical behaviour of powder deforming domain. The conventional P/M forming process consists of different stages such as closed cold die compaction, sintering and hot/cold forging. In the present study a finite element based computational model has been formulated to study the hot forging stage with particular reference to forging of P/M connecting rods. In order to achieve this purpose, a new finite element formulation has been developed to model the powder deformation under a given thermo-mechanical loading. Essentially, the computational model is formulated based on a visco-plastic Green type material model considering an independent idealization of strain rates into a total deformation part and a dilatational part, and the yield criterion takes into account the pressure sensitivity. The model is set in a perturbed Lagrangian functional, leading to a three field mixed formulation with velocity, Lagrangian multiplier/pressure and volumetric strain rates as three basic unknowns in the finite element domain. The developed finite element model can be used right from the compressible domain to the incompressible domain with the Lagrangian multiplier becoming then the pressure. A relative density-dependent visco-plastic type of friction law is used for characterizing the friction behaviour between the powder preform and the die. The required various material parameters are determined from experiments on aluminium powder preforms. In order to facilitate the non-isothermal deformation study, a powder-based transient thermal analysis has been developed. A computational scheme has been used to couple the mechanical and thermal calculations. Using the developed three-dimensional code, hot forging of automotive components can be simulated and which in the present study is exemplified by simulation of hot forging of a P/M connecting rod. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
为改善2219铝合金薄壁拉形曲面件的变形均匀性,建立基于Hill 1990各向异性屈服准则的有限元模型,利用ABAQUS软件对曲面件的应变分布规律进行数值模拟,分析加载路径和板坯形状对拉形变形均匀性的影响规律。结果表明:加载路径和板坯形状对曲面件的变形均匀性有较大影响。采用折线路径,开始加载时使板材发生压缩失稳从而形成一定拱形,不仅可缓解左侧钳口附近的破裂倾向,还可增加曲面件右侧变形量,从而提高其变形均匀性。此外,减小变形量不足位置对应的板坯宽度,如采用中间窄板坯或左侧宽板坯,使其在拉形时所受应力增加,从而提高其变形量,也可实现变形均匀性的改善。最终,利用矩形板坯,经两次转折的实验路径进行拉形,获得了表面质量良好的高性能2219铝合金薄壁曲面件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号