首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Orthogonal frequency division multiplexing (OFDM) systems with direct-conversion receiver (DCR) are vulnerable to carrier frequency offset (CFO), dc offset (DCO) and in-phase/quadrature (I/Q) imbalance. In this paper, we propose blind estimator for joint estimation of CFO, DCO and I/Q imbalance in OFDM systems with DCR. Simulation results show that performance of proposed estimator approaches Cramér-Rao lower bound (CRLB) asymptotically, which demonstrates its effectiveness.  相似文献   

2.
In-phase/quadrature (I/Q) imbalance is one of the main sources of distortion in RF modulators. In this paper, a dual-input nonlinear model based on a real-valued Volterra series is proposed for compensation of the nonlinear frequency-dependent I/Q imbalance. First, different sources of distortion are identified from experimental measurements, then a dual-input nonlinear I/Q imbalance model is developed. Further, the inverse model is used for I/Q imbalance compensation. Finally, the performance of the I/Q imbalance compensator is evaluated with both simulations and experiments. In comparison with previously published results, the proposed I/Q imbalance compensator shows significantly improved performance. Thus, we prove that a complete nonlinear I/Q imbalance compensation can minimize the effects of the RF modulator in high-performance digital communication systems.   相似文献   

3.
The direct-conversion architecture is an attractive front-end design for multi-input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. These systems are typically small in size and provide a good flexibility to support growing number of wireless standards. However, direct-conversion based OFDM systems are generally very sensitive to front-end component imperfections. These imperfections are unavoidable especially when cheaper components are used in the manufacturing process and can lead to radio frequency (RF) impairments such as in-phase/quadrature-phase (IQ) imbalance. These RF impairments can result in a severe performance degradation. In this paper, we propose training based efficient compensation schemes for MIMO OFDM systems impaired with transmitter and receiver frequency selective IQ imbalance. The proposed schemes can decouple the compensation of the transmitter and receiver IQ imbalance from the compensation of the channel distortion. It is shown that the proposed schemes result in an overall lower training overhead and a lower computational requirement as compared to a joint estimation/compensation of IQ imbalance and the channel distortion.  相似文献   

4.
Two types of wireless communication system imperfections, namely carrier frequency offset (CFO) and in-phase/quadrature-phase (I/Q) imbalance, are addressed in this paper. We propose an efficient time domain CFO and I/Q imbalance estimation and compensation scheme for multi-band orthogonal frequency division multiplexing based ultra-wideband system. In this scheme, a data-aided CFO estimation algorithm, which is robust to a large I/Q imbalance, is presented. Also, a time domain I/Q imbalance estimation algorithm based on partially CFO compensated preambles is introduced. Finally a two-step joint CFO and I/Q imbalance compensation scheme is developed. Taking full advantage of the ECMA-368 preamble symbols, the proposed scheme is competent for large I/Q imbalance (2-dB gain error and 20-deg Phase error) and carrier frequency offset (50 ppm), and the results are confirmed by simulations.  相似文献   

5.
零中频接收机已成为未来无线终端发展潮流,但是零中频的结构会引入较大的射频损伤;本文首先介绍了射频I/Q不平衡时对高斯以及频率选择性信道下OFDM接收机性能的影响;通过特殊导频设计,解耦合I、Q路的相互影响;如此可以方便地估计和补偿射频I/Q不平衡对高斯以及频率选择性信道的影响。仿真表明本文所示方法大大提高了OFDM零中频接收机的性能。  相似文献   

6.
OFDM联合信道均衡与I/Q失衡补偿算法   总被引:1,自引:1,他引:0  
分析多径衰落信道下零中频接收机的I/Q失衡对OFDM系统造成的影响,并在此基础上构造一个结合了信道频率响应与I/Q失衡因子的复合信道模型.通过设计OFDM双导频符号进行复合信道均衡,从而能同时补偿多径衰落信道和I/Q失衡对OFDM系统造成的影响.仿真结果表明:这种联合算法大大提高了OFDM系统的性能,而且具有较低的实现复杂度.  相似文献   

7.
为了研究真实环境5G下行I/Q解码流程,构建"5G核心网+5G基站+测试终端+I/Q数字采集系统"的测试环境,采集基站下行空口信号I/Q数据,并基于3GPP第15版本标准,开展5G下行控制信道PDCCH盲检流程研究,包括候选PDCCH时频域位置确定、信道估计与相关检测,PDCCH比特序列解码流程(含解扰,解速率匹配,极化码译码,循环冗余校验,信息解析等环节),展示了关键层三参数、协议流程、算法原理以及PDCCH解码星座图。  相似文献   

8.
Direct-conversion architectures suffer from the mismatch between the In-phase (I) and the Quadrature-phase (Q) branches, commonly called I/Q imbalance. Even low I/Q imbalances imply poor performance of Orthogonal Frequency Division Multiplexing (OFDM) systems. In this paper, we propose a new algorithm that uses both training and data symbols in a decision-directed fashion to jointly estimate the channel and compensate for high receiver I/Q imbalance. Simulation results show that our method can compensate for high I/Q imbalance values and also estimate a frequency selective channel.  相似文献   

9.
基于STBC方案,针对MIMO OFDM通信系统中同时存在发射机和接收机I/Q不平衡、前端滤波器失配、CFO和频率选择性信道失真的组合影响进行了深入研究,并提出了一种适用的联合均衡策略;具体实现是首先通过对MIMO OFDM系统中只存在发射机I/Q不平衡和多径信道干扰的分析,得到一种频域均衡器;然后再考虑同时存在接收机I/Q不平衡和CFO的情况,得到了2个时域均衡器;最后把2个时域均衡器变换到频域,并结合消除发射机I/Q不平衡和多径信道干扰的频域均衡技术,提出了一种全面的联合均衡技术即频域子载波均衡器。仿真结果表明,针对MIMO OFDM系统提出的频域子载波均衡技术不仅能扩展到其他高阶STBC系统,而且使均衡后的系统BER性能得到了明显的提高。  相似文献   

10.
Independent component analysis (ICA), an efficient higher order statistics (HOS) based blind source separation technique, has been successfully applied in various fields. In this paper, we provide an overview of the applications of ICA in multiple-input multiple-output (MIMO) wireless communication systems, and introduce some of the important issues surrounding them. First, we present an ICA based blind equalization scheme for MIMO orthogonal frequency division multiplexing (OFDM) systems, with linear precoding for ambiguity elimination. Second, we discuss three peak-to-average power ratio (PAPR) reduction schemes, which do not introduce any spectral overhead. Third, we investigate the application of ICA to blind compensation for inphase/quadrature (I/Q) imbalance in MIMO OFDM systems. Finally, we present an ICA based semi-blind layer space-frequency equalization (LSFE) structure for single-carrier (SC) MIMO systems. Simulation results show that the ICA based equalization approach provides a much better performance than the subspace method, with significant PAPR reduction. The ICA based I/Q compensation approach outperforms not only the previous compensation methods, but also the case with perfect channel state information (CSI) and no I/Q imbalance, due to additional frequency diversity obtained. The ICA based semi-blind LSFE receiver outperforms its OFDM counterpart significantly with a training overhead of only 0.05%.  相似文献   

11.
《Electronics letters》2009,45(10):514-515
An ultra-wideband (UWB) I/Q downconverter with an LR-CR quadrature generator is demonstrated using 0.35 μm SiGe HBT technology. The I/Q outputs of this generator are always in quadrature phase at any frequency while the BJT-type active mixer inherently tolerates much LO power difference for a flat gain response. Consequently, the amplitude imbalance and phase error of the I/Q outputs are less than 1 dB and 2° in the RF frequency range 3?11 GHz.  相似文献   

12.
在当前许多复杂调制射频信号源中,随着数字基带信号越来越多的加入.需要正交凋制器将其调制到需要的载波信号上。正交调制器原理简单:将生成好的I/Q两路基带信号调制到两路正交的载波上,合路后输出。但是在实现时,想获得好的指标就需要考虑载波相位误差,I/Q基带信号幅度不平衡以及载波泄漏等问题。文章给出了一种正交调制器的校准方案,可以减少和模拟以上三种现象造成的调制误差,并给出自动校准和手动校准两种方法。  相似文献   

13.
零中频接收机凭借其架构简单、易于集成等特点已被广泛应用于通信系统和雷达系统,为未来雷达通信一体化技术发展奠定了基础。然而,零中频接收机存在I/Q不平衡问题,这不仅会造成通信星座图的偏移,还会引入雷达虚假目标。现有宽带I/Q补偿方法的精度不高,且都集中于后处理,无法做到实时。因此,本文首先建立了宽带I/Q不平衡模型,并提出了一种融合信道化架构和盲估计补偿算法的宽带I/Q失衡校准技术。该技术利用信道化架构将宽带信号划分为窄带信号,并利用盲估计算法对带有镜像信号的子信道进行在线补偿。实验表明,该方法在获得高精度补偿参数的同时,完成了对宽带I/Q失衡的实时补偿。镜像抑制比达到55 dB。  相似文献   

14.
由于零中频接收机的优点,其已经成为未来无线终端发展的方向.但它也有固有缺陷,即引入较大的射频损伤.首先分析了I/Q不平衡的系统模型,接着推导出其在OFDM系统中对接收机的影响.提出了一种硬件容易实现的简便时域估计和补偿I/Q不平衡的算法.最后通过仿真给出了该算法的性能,仿真表明在AWGN和频率选择性衰落信道下能够明显提高接收机的误码率性能.  相似文献   

15.
Digital calibration and control techniques for narrow band integrated low-IF receivers with on-chip frequency synthesizer are presented. The calibration and control system, which is adopted to ensure an achievable signal-to-noise ratio and bit error rate, consists of a digitally controlled, high resolution dB-linear automatic gain control (AGC), an inphase (I) and quadrature (Q) gain and phase mismatch calibration, and an automatic frequency calibration (AFC) of a wideband voltage-controlled oscillator in a PLL based frequency synthesizer. The calibration system has a low design complexity with little power and small die area. Simulation results show that the calibration system can enlarge the dynamic range to 72 dB and minimize the phase and amplitude imbalance between I and Q to 0.08° and 0.024 dB, respectively, which means the image rejection ratio is better than 60 dB. In addition, the calibration time of the AFC is 1.12μs only with a reference clock of 100 MHz.  相似文献   

16.
The current trend in building low-cost yet flexible radio transceivers is to use the so-called direct-conversion principle, which is based on complex (I/Q) up- and down conversions. Such transceivers are, however, sensitive to mismatches between the I and Q branches. These mismatches are unavoidable in any practical implementation, and result in finite attenuation of the mirror frequencies. In addition to the mirror-frequency interference problem, I/Q mismatches can severely compromise the performance of power amplifier linearization techniques based on pre-distortion. The effects of these impairments are becoming more pronounced as higher order modulated waveforms and/or more wideband multichannel signals are used. This brief focuses on digital-signal-processor-based I/Q mismatch calibration in wideband direct-conversion transmitters, assuming the challenging case of frequency-dependent I/Q mismatch. First, a novel widely linear (WL) calibration structure is introduced, suitable for frequency-dependent calibration. Then, two alternative principles for calibration parameter estimation are proposed. The first estimation approach stems from second-order statistics of complex communication signals, while the second technique is based on WL least-squares model fitting. Both estimators are shown by simulations to yield very good calibration performance. The obtainable performance is further assessed using laboratory RF signal measurements.  相似文献   

17.
The fourth-generation (4G) of cellular terminals will integrate the services provided by previous generations second-generation/third-generation (2G/3G) with other applications like global positioning system (GPS), digital video broadcasting (DVB) and wireless networks, covering metropolitan (IEEE 802.16), local (IEEE 802.11) and personal (IEEE 802.15) areas. This new generation of hand-held wireless devices, also named always-best-connected systems, will require low-power and low-cost multi-standard chips, capable of operating over different co-existing communication protocols, signal conditions, battery status, etc. Moreover, the efficient implementation of these chipsets will demand for reconfigurable radio frequency (RF) and mixed-signal circuits that can adapt to the large number of specifications with minimum power dissipation at the lowest cost.Nanometer CMOS processes are expected to be the base technologies to develop 4G systems, assuring mass production at low cost through increased integration levels and extensive use of digital signal processing. However, the integration in standard CMOS of increasingly complex analog/RF parts imposes a number of challenges and trade-offs that make their design critical.These challenges are addressed in this paper through a comprehensive revision of the state-of-the-art on transceiver architectures, building blocks and design trade-offs of reconfigurable and adaptive CMOS RF and mixed-signal circuits for emerging 4G systems.  相似文献   

18.
We propose an RF I/Q downconverter including a calibration procedure to compensate for gain and phase mismatch errors. The indirect compensation technique is based on the use of the local oscillator (LO) signal as reference for error measurements. A number of mismatch parameters are first estimated by an algorithm running in the digital signal processing processor following the analog-to-digital converter and then used to correct the downconverted I/Q signals digitally during normal operation. The downconverter has been designed in 0.13-mum CMOS technology. The analog part of the system for calibration adds a negligible area and power consumption with respect to the front-end building blocks. Test results exhibit an image-rejection ratio IRRges48.8 dB for I/Q phase errors up to 15deg and for LO I/Q amplitude and mixer gain mismatch errors up to 10%  相似文献   

19.
In order to reduce I/Q imbalance of the full-duplex terminal with direct-conversion transceiver,an algorithm based on self-interference signal was proposed for the estimation and compensation of I/Q imbalance in both transmitter (Tx) and receiver (Rx).Without the perfect transmitter or receiver for I/Q imbalance estimation,the self-interference signal from Tx chain to Rx chain was used for parameter estimation and separation,and the Tx and Rx I/Q imbalance parameters were obtained,respectively.Then the pre-compensation before transmission and the correction after receiving was processed,so that there was nearly no I/Q imbalance in this full-duplex terminal from the view of the other terminals,and the complexity of the signal processing will be reduced as a result of the absent of the I/Q imbalance estimation.The simulation results show that the proposed algorithm can effectively estimate and compensate the I/Q imbalance of the full-duplex Tx & Rx terminal,and improve the overall signal quality and the system performance.  相似文献   

20.
The I/Q imbalance is one of the performance bottlenecks in transceivers with stringent requirements imposed by applications such as 802.11a. The mismatch between the frequency responses of two analog low-pass filters, used, e.g., for channel selection in zero-IF receivers, makes this I/Q imbalance frequency dependent. Usually, frequency-dependent I/Q mismatch is estimated and corrected by adaptive techniques, which are complex to implement and may converge slowly due to noise. In this work, a simple, delay-based I/Q compensation scheme is proposed based on an extensive statistical analysis. Its digital implementation uses only two coefficients, which are tuned by a one-step two-tone error estimation. Simulations show that this hardware-efficient scheme significantly reduces the I/Q imbalance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号