首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The hydrolysis of fructose-1,6-bisphosphate to fructose-6-phosphate is a key reaction of carbohydrate metabolism. The enzyme that catalyzes this reaction, fructose-1,6-bisphosphatase, appears to be present in all forms of living organisms. Regulation of the enzyme activity, however, occurs by a variety of distinct mechanisms. These include AMP inhibition (most sources), cyclic AMP-dependent phosphorylation (yeast), and light-dependent activation (chloroplast). In this short review, we have analyzed the function of several fructose-1,6-bisphosphatases and we have made a comparison of partial amino acid sequences obtained from the enzymes of the yeast Saccharomyces cerevisiae, Escherichia coli, and spinach chloroplasts with the known entire amino acid sequence of a mammalian gluconeogenic fructose-1,6-bisphosphatase. These results demonstrate a very high degree of sequence conservation, suggesting a common evolutionary origin for all fructose-1,6-bisphosphatases.  相似文献   

2.
In the gluconeogenic pathway, fructose-1,6-bisphosphatase (EC 3. 1. 3. 11) is the last key-enzyme before the synthesis of glucose-6-phosphate. The extreme diversity of cells present in the whole brain does not facilitate in vivo study of this enzyme and makes it difficult to understand the regulatory mechanisms of the related carbohydrate metabolism. It is for instance difficult to grasp the actual effect of ions like potassium, magnesium and manganese on the metabolic process just as it is difficult to grasp the effect of different pH values and the influence of glycogenic compounds such as methionine sulfoximine. The present investigation attempts to study the expression and regulation of fructose-1,6-bisphosphatase in cultured astrocytes. Cerebral cortex of new-born rats was dissociated into single cells that were then plated. The cultured cells were flat and roughly polygonal and were positively immunostained by anti-glial fibrillary acidic protein antibodies. Cultured astrocytes are able to display the activity of fructose-1,6-bisphosphatase. This activity was much higher than that in brain tissue in vivo. Fructose-1,6-bisphosphatase in cultured astrocytes did not require magnesium ions for its activity. The initial velocity observed when the activity was measured in standard conditions was largely increased when the enzyme was incubated with Mn2+. This increase was however followed by a decrease in absorbance resulting in the induction, by the manganese ions, of a singular kinetics in the enzyme activity. Potassium ions also stimulated fructose-1,6-bisphosphatase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The structural transformation of fructose-1,6-bisphosphatase upon binding of the allosteric regulator AMP dramatically changes the interactions across the C1-C4 (C2-C3) subunit interface of the enzyme. Asn9, Met18, and Ser87 residues were modified by site-directed mutagenesis to probe the function of the interface residues in porcine liver fructose-1,6-bisphosphatase. The wild-type and mutant forms of the enzyme were purified to homogeneity and characterized by initial rate kinetics and circular dichroism (CD) spectrometry. No discernible alterations in structure were observed among the wild-type and Asn9Asp, Met18Ile, Met18Arg, and Ser87Ala mutant forms of the enzyme as measured by CD spectrometry. Kinetic analyses revealed 1.6- and 1.8-fold increases in kcat with Met18Arg and Asn9Asp, respectively. The K(m) for fructose 1,6-bisphosphate increased about 2-approximately 4-fold relative to that of the wild-type enzyme in the four mutants. A 50-fold lower Ka value for Mg2+ compared with that of the wild-type enzyme was obtained for Met18Ile with no alteration of the Ki for AMP. However, the replacement of Met18 with Arg caused a dramatic decrease in AMP affinity (20 000-fold) without a change in Mg2+ affinity. Increases of 6- and 2-fold in the Ki values for AMP were found with Asn9Asp and Ser87Ala, respectively. There was no difference in the cooperativity for AMP inhibition between the wild-type and the mutant forms of fructose-1,6-bisphosphatase. This study demonstrates that the mutation of residues in the C1-C4 (C2-C3) interface of fructose-1,6-bisphosphatase can significantly affect the affinity for Mg2+, which is presumably bound 30 A away. Moreover the mutations alternatively reduce AMP and Mg2+ affinities, and this finding may be associated with the destabilization of the corresponding allosteric states of the enzyme. The kinetics and structural modeling studies of the interface residues provide new insights into the conformational equilibrium of fructose-1,6-bisphosphatase.  相似文献   

4.
5.
A disordered loop (loop 52-72, residues 52-72) in crystal structures of fructose-1,6-bisphosphatase (FBPase) has been implicated in regulatory and catalytic phenomena by studies in directed mutation. A crystal structure of FBPase in a complex with three zinc cations and the products fructose 6-phosphate (F6P) and phosphate (Pi) reveals loop 52-72 for the first time in a well-defined conformation with strong electron density. Loop 52-57 interacts primarily with the active site of its own subunit. Asp68 of the loop hydrogen bonds with Arg276 and a zinc cation located at the putative potassium activation site. Leu56 and Tyr57 of the loop pack against hydrophobic residues from two separate subunits of FBPase. A mechanism of allosteric regulation of catalysis is presented, in which AMP, by binding to its allosteric pocket, displaces loop 52-72 from the active site. Furthermore, the current structure suggests that both the alpha- and beta-anomers of F6P can be substrates in the reverse reaction catalyzed by FBPase. Mechanisms of catalysis are proposed for the reverse reaction in which Asp121 serves as a catalytic base for the alpha-anomer and Glu280 serves as a catalytic base for the beta-anomer.  相似文献   

6.
A bifunctional enzyme, fructose-6-phosphate,2-kinase/fructose 2, 6-bisphosphatase (Fru-6-P,2-kinase/Fru-2,6-Pase), catalyzes synthesis and degradation of fructose 2,6-bisphosphate (Fru-2,6-P2). Previously, the rat liver Fru-2,6-Pase reaction (Fru-2,6-P2 --> Fru-6-P + Pi) has been shown to proceed via a phosphoenzyme intermediate with His258 phosphorylated, and mutation of the histidine to alanine resulted in complete loss of activity (Tauler, A., Lin, K., and Pilkis, S. J. (1990) J. Biol. Chem. 265, 15617-15622). In the present study, it is shown that mutation of the corresponding histidine (His256) of the rat testis enzyme decreases activity by less than a factor of 10 with a kcat of 17% compared with the wild type enzyme. Mutation of His390 (in close proximity to His256) to Ala results in a kcat of 12.5% compared with the wild type enzyme. Attempts to detect a phosphohistidine intermediate with the H256A mutant enzyme were unsuccessful, but the phosphoenzyme is detected in the wild type, H390A, R255A, R305S, and E325A mutant enzymes. Data demonstrate that the mutation of His256 induces a change in the phosphatase hydrolytic reaction mechanism. Elimination of the nucleophilic catalyst, H256A, results in a change in mechanism. In the H256A mutant enzyme, His390 likely acts as a general base to activate water for direct hydrolysis of the 2-phosphate of Fru-2,6-P2. Mutation of Arg255 and Arg305 suggests that the arginines probably have a role in neutralizing excess charge on the 2-phosphate and polarizing the phosphoryl for subsequent transfer to either His256 or water. The role of Glu325 is less certain, but it may serve as a general acid, protonating the leaving 2-hydroxyl of Fru-2,6-P2.  相似文献   

7.
Fructose-1,6-bisphosphatase deficiency is an inheritable disorder of gluconeogenesis. Sequence analysis of the cDNA of the fructose-1,6-bisphosphatase mRNA isolated from monocytes from a girl with this disease and her consanguineous parents revealed that the patient and her parents were a homozygote and heterozygotes for an insertion of one G residue at G957GGGG961, respectively. This mutation resulted in translation of a truncated enzyme protein, and the mutant protein showed no fructose-1,6- bisphosphatase activity in an overexpression experiment in Escherichia coli. However, this mutation is located in a region of the amino acid sequence which is not well conserved among mammals. A mutagenized clone was prepared from the normal clone. The extents of substitutions and deletions of the amino acid sequence were predicted to be less in the mutagenized protein than in the mutant protein. This mutagenized clone also expressed no fructose-1,6-bisphosphatase activity, although both of two normal clones from control monocytes and a control liver sample expressed an apparently normal level of fructose-1,6-bisphosphatase activity. Thus, this mutation is concluded to be responsible for fructose-1,6-bisphosphatase deficiency in this patient.  相似文献   

8.
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterized by tumors of the parathyroids, pancreatic islets, and anterior pituitary. The MEN1 gene, on chromosome 11q13, has recently been cloned, and mutations have been identified. We have characterized such MEN1 mutations, assessed the reliability of SSCP analysis for the detection of these mutations, and estimated the age-related penetrance for MEN1. Sixty-three unrelated MEN1 kindreds (195 affected and 396 unaffected members) were investigated for mutations in the 2,790-bp coding region and splice sites, by SSCP and DNA sequence analysis. We identified 47 mutations (12 nonsense mutations, 21 deletions, 7 insertions, 1 donor splice-site mutation, and 6 missense mutations), that were scattered throughout the coding region, together with six polymorphisms that had heterozygosity frequencies of 2%-44%. More than 10% of the mutations arose de novo, and four mutation hot spots accounted for >25% of the mutations. SSCP was found to be a sensitive and specific mutational screening method that detected >85% of the mutations. Two hundred and one MEN1 mutant-gene carriers (155 affected and 46 unaffected) were identified, and these helped to define the age-related penetrance of MEN1 as 7%, 52%, 87%, 98%, 99%, and 100% at 10, 20, 30, 40, 50, and 60 years of age, respectively. These results provide the basis for a molecular-genetic screening approach that will supplement the clinical evaluation and genetic counseling of members of MEN1 families.  相似文献   

9.
Three mouse monoclonal antibodies of human liver fructose 1,6-bisphosphatase are shown to bind to the enzyme at different sites as determined by ELISA. The binding of one of the monoclonal antibodies, L2E1, mimics the effects of K+ ions, including increase in the enzyme activity and enhancement of the sensitivity of the enzyme to AMP inhibition. We tentatively suggest that human liver FruP2ase may have a specific K+ activation site, which at least partially overlaps with the L2E1 binding region. This site has been localized by analyzing the peptide fragments formed by cleavage with cyanogen bromide.  相似文献   

10.
11.
12.
Increased hepatic glucose production, a feature of (non-insulin-dependent diabetes mellitus [NIDDM]), is present at an early age in the New Zealand Obese (NZO) mouse and is associated with impaired suppression of the gluconeogenic enzyme, fructose-1,6-bisphosphatase (FBPase). The aim of this study was to further characterize the abnormality in the regulation of hepatic FBPase in NZO mice versus New Zealand Chocolate (NZC) control mice. At 20 weeks of age, NZO mice have elevated FBPase activity (65.3 +/- 7.9 v 46.7 +/- 5.0 micromol/min/mg protein, P =.07) and protein levels (31.7 +/- 3.1 v 22.5 +/- 2.8 arbitrary units, P < .05), but not mRNA levels (0.18 +/- 0.03 v 0.16 +/- 0.03 arbitrary units). Elevated FBPase activity and protein levels in NZO mice were also shown at 4 to 6 weeks of age, but not in 1-day-old mice, suggesting that the increase occurs between birth and weaning. The Km of the enzyme was the same in NZO and NZC mice (3.7 +/- 0.5 v 5.0 +/- 0.9 micromol/L, NZO v NZC). The regulation of FBPase by the competitive inhibitor, fructose-2,6-bisphosphate ([Fru(2,6)Pz] 5 micromol/L) measured over a range of substrate concentrations (2.5 to 80 micromol/L) was similar between NZO and control mice (Km in the presence of Fru(2,6)Pz, 10.8 +/- v 1.9 v 13.2 +/- 3.3 micromol/L, NZO v NZC). It is concluded that increased FBPase activity in the NZO mouse is due to elevated protein levels, and that this appears to be due to a failure of the normal decrease that occurs following birth in control animals.  相似文献   

13.
In discrimination experiments honey bees had to decide between two glass dishes, one placed on a black cross, the other 40 cm away on a black square. In spontaneous selections the bees in 70% of all cases chose the black cross. The bees were then trained to search back and forth between the cross and the square until after 5 min sugar-water was given on the black square. Over a total of 5 learning trials, during which multiple decisions had been made by the searching insects, 96% of all choices were in favour of the black square. If 80 mM fructose-1,6-diphosphate (F-1,6-P2) in 1 M glucose had been ingested by the bees 30 min before the first spontaneous choice, learning was facilitated with 83% deciding in favour of the black square at the first trial compared with 46% of the controls (which had been fed on 1 M glucose only). In both groups of bees the same number of flight approches was made to the cross or square as made by the bees searching for 5 min before the reward was given. Thus no change in general activity or harvesting motivation appears to be induced by F-1,6-P2. When F-1,6-P2 had been given at the end of a successful learning series the bees favoured the black square for up to 3 days. In contrast to the controls no new incentive needed to be given during this period. Ingestion of other metabolites proved either ineffective, as in the case of fructose-6-phosphate or 5'-adenosine monophosphate, or, as observed after feeding citrate plus 3-phosphoglycerate, even reduced the performance. To test the effect of F-1,6P2 on the same time sense (circadian rhythm), bees were trained on three successive days to visit a feeding place at a specific time of day. The control bees which ingested only glucose on the evening of the 3rd day returned at their entrained 24-h interval on the 4th day. In contrast, the maximum frequency of appearance of bees fed on F-1,6-P2 was advanced by one hour, with minor appearance peaks at earlier hours of the day.  相似文献   

14.
Fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase (Fru-6-P, 2-kinase/Fru-2,6-Pase) is a bifunctional enzyme, catalyzing the interconversion of beta-D-fructose- 6-phosphate (Fru-6-P) and fructose-2,6-bisphosphate (Fru-2,6-P2) at distinct active sites. A mutant rat testis isozyme with an alanine replacement for the catalytic histidine (H256A) in the Fru-2,6-Pase domain retains 17% of the wild type activity (Mizuguchi, H., Cook, P. F., Tai, C-H., Hasemann, C. A., and Uyeda, K. (1998) J. Biol. Chem. 274, 2166-2175). We have solved the crystal structure of H256A to a resolution of 2. 4 A by molecular replacement. Clear electron density for Fru-6-P is found at the Fru-2,6-Pase active site, revealing the important interactions in substrate/product binding. A superposition of the H256A structure with the RT2K-Wo structure reveals no significant reorganization of the active site resulting from the binding of Fru-6-P or the H256A mutation. Using this superposition, we have built a view of the Fru-2,6-P2-bound enzyme and identify the residues responsible for catalysis. This analysis yields distinct catalytic mechanisms for the wild type and mutant proteins. The wild type mechanism would lead to an inefficient transfer of a proton to the leaving group Fru-6-P, which is consistent with a view of this event being rate-limiting, explaining the extremely slow turnover (0. 032 s-1) of the Fru-2,6-Pase in all Fru-6-P,2-kinase/Fru-2,6-Pase isozymes.  相似文献   

15.
The National Practitioner Data Bank (NPDB), created by the 1986 Health Care Quality Improvement Act, has been in operation since 1990. Hospitals and other credentialing bodies must query the NPDB when granting and renewing privileges. The NPDB receives about 25,000 reports of adverse actions against health practitioners each year. The NPDB was designed to be a flagging system providing information to licensing or credentialing authorities who would further examine practitioner records. Its purpose is to ensure that decision makers have information that might not otherwise be readily available, especially in the case of incompetent practitioners who move from hospital to hospital or state to state. Access to NPDB information is a concern for consumers and providers alike. Only 2% of matched reports to the NPDB made a difference in hospital privileging decisions. A limitation of NPDB information is that malpractice payments recorded in the NPDB do not necessarily constitute a comprehensive and definitive reflection of actual health care incompetence. All health care providers need to be aware of the NPDB, its mission, potential impact on their ability to be credentialed, and proposed additional uses of its information.  相似文献   

16.
A combined experimental and theoretical investigation of the deuterium isotope effects on the bacterial luciferase reaction is described. The experimental studies focus on determining if the unusual aldehydic deuterium isotope effect of approximately 1.5 observed in these reactions is an intrinsic isotope effect resulting from a single rate-limiting step or is a composite of multiple rate-limiting steps. The isotope effect observed is not significantly affected by variation in the aldehyde chain length, changes in the pH over a range of 6-9, use of alphaC106A and alphaC106S site-directed mutants, or chloride substitution at the 8-position of the reduced flavin, though the isotope effect is decreased when the 8-methoxy-substituted flavin is used as a substrate. From these observations it is concluded that the aldehydic isotope effect arises from the change in rate of a single kinetic step. A stopped-flow kinetic analysis of the microscopic rate constants for the reactions of 1-[1H]decanal and 1-[2H]decanal in the bacterial luciferase reaction was carried out, and aldehyde hydration isotope effects were determined. From the results it is estimated that the aldehydic deuterium isotope effect is approximately 1.9 after formation of an intermediate flavin C4a-hydroperoxy hemiacetal. Ab initio calculations were used to examine the transformation of the aldehyde into a carboxylic acid and to predict isotope effects for possible mechanisms. These calculations indicate that the mechanism involving rate-limiting electron transfer from the flavin C4a-hydroxide to an intermediate dioxirane is consistent with the enigmatic aldehydic isotope effect and that the intermediacy of a dioxirane is energetically plausible.  相似文献   

17.
We investigated the relationship between the Trp64Arg mutation in the beta 3-adrenergic receptor gene and insulin sensitivity, which was evaluated by the euglycemic-hyperinsulinemic-clamp technique, in 54 patients with impaired glucose tolerance (IGT) or non-insulin dependent diabetes mellitus (NIDDM) who were not receiving insulin therapy. The frequencies of Trp/Trp, Trp/Arg, and Arg/Arg genotypes in the patients were 63.0, 33.3, and 3.7%, respectively, which did not differ significantly from those of the 227 controls (67.0, 33.3, and 3.7%, respectively, which did not differ significantly from those of the 227 controls (67.0, 31.3, and 1.8%, respectively). The mean glucose infusion rate of the 34 patients with Trp/Trp did not differ from that of the 18 patients with Trp/Arg (4.3 +/- 2.2 and 5.3 +/- 2.4 mg/kg/min, respectively); while that of the 2 patients with Arg/Arg was 11.5 mg/kg/min. There were no differences in the BMI or fat distribution in the abdomen between each genotype of patients, although the frequency of the Arg64 allele tended to increase with body mass index (BMI) in the control subjects under 60 years of age, which suggests that the mutation is involved in weight gain.  相似文献   

18.
Spodoptera frugiperda retinol dehydratase catalyzes the conversion of retinol to the retro-retinoid anhydroretinol. It shares sequence homology with the family of mammalian cytosolic sulfotransferases and provides the first link between sulfotransferases and retinol metabolism. In this study the enzymatic properties of retinol dehydratase were examined using bacterially expressed protein. We show that retinol dehydratase can catalyze the transfer of the sulfonate moiety to small phenolic compounds and exhibits many functional similarities to the mammalian cytosolic sulfotransferases. The bisubstrate reaction that it catalyzes between retinol and the universal sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate seems to involve ternary complex formation and to proceed via a Random Bi Bi mechanism. In addition to the low nanomolar Km value for free retinol, retinol dehydratase is strongly inhibited by retinol metabolites, suggesting a preference for retinoids. Conversely, a number of tested mammalian cytosolic sulfotransferases do not utilize retinol, indicating that retinol is not a general substrate for sulfotransferases.  相似文献   

19.
Inversion is a dominant aspect of morphogenesis in Volvox. In this process, the hollow, spheroidal Volvox embryo turns inside-out through a small opening called the phialopore to bring flagella from its inner to its outer surface. Analyses of intact, sectioned, and fragmented embryos by light, scanning electron, and transmission electron microscopy, suggest that shape changes preprogrammed into the cells cause inversion. First, cells throughout the embryo change from pear to spindle shape, which causes the embryo to contract and the phialopore to open. Then cells adjacent to the phialopore become flask-shaped, with long, thin stalks at their outer ends. Simultaneously, the cytoplasmic bridges joining all adjacent cells migrate from the midpoint of the cells to the stalk tips. Together, these changes cause the lips of cells at the phialopore margin to curl outward. Now cells progressively more distal to the phialopore become flask-shaped while the more proximal cells become columnar, causing the lips to curl progressively further over the surface of the embryo until the latter has turned completely inside-out. Fine structural analysis reveals a peripheral cytoskeleton of microtubules that is apparently involved in cellular elongation. Cell clusters isolated before inversion undergo a similar program of shape changes; this suggests that the changes in cellular shape are the cause rather than an effect of the inversion process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号